
College of Polytechnics Jihlava
College of information Management, Business Administration and Law
Czech Technical University in Prague, Faculty of Electrical Engineering

SDOT 2013

Proceedings of federated conference on 39th Software Development and 17th Object Technologies

Martin Molhanec, Michal Bejček, Jan Voráček (Editors)

Jihlava, Czech Republic, November 8, 2013

Steering committee:

Chairman:

Martin Molhanec Czech Technical University in Prague, CR

Members:

Petr Koubský iCollege, Prague, CR

Branislav Lacko Brno University of Technology, CR

Vojtěch Merunka Czech University of Life Sciences, Prague, CR

Rudolf Pecinovský University of Economics, Prague, CR

Bogdan Pilawski Bank Zachodni WBK, Wroclaw, PL

Jiří Polák SPIS, CR

Ľubomír Sadloň University of Žilina, SK

Milena Tvrdíková VŠB-Technical University of Ostrava, CR

Miroslav Virius Czech Technical University in Prague, CR

Jan Voráček College of Polytechnics, Jihlava, CR

Štefan Zajac Czech Technical University in Prague, CR

Programme committee:

Chairman:

Vojtěch Merunka Czech University of Life Sciences, Prague, CR

Members:

Michal Bejček
College of Information Management, Business

Administration and Law, Prague, CR

Dagmar Brechlerová Czech University of Life Sciences, Prague, CR

Alena Buchalcevová University of Economics, Prague, CR

František Huňka University of Ostrava, CR

Ján Janech University of Žilina, SK

Tomáš Kozel University of Hradec Králové, CR

Emil Kršák University of Žilina, SK

Martin Molhanec Czech Technical University in Prague, CR

Robert Pergl Czech Technical University in Prague, CR

Tomáš Pitner Masaryk University, Brno, CR

Jaroslav Ráček IBA CZ, s.r.o., CR

Karel Richta Charles University, Prague, CR

Tomáš Richta College of Polytechnics, Jihlava, CR

Antonín Slabý University of Hradec Králové, CR

Václav Snášel VŠB-Technical University of Ostrava, CR

Petr Šaloun VŠB-Technical University of Ostrava, CR

Michal Valenta Czech Technical University in Prague, CR

Michal Vopálenský College of Polytechnics Jihlava, CR

Organising committee (College of Polytechnics, Jihlava, CR)

Chairman:

Jan Voráček

Members:

Zbyněk Bureš

Michaela Machovcová

Antonín Přibyl

Tomáš Richta

František Smrčka

Hana Vojáčková

Michal Vopálenský

Úvodní slovo

Table of contents

Table of contents 5

LINQ preprocessor for the C++ 7

Miroslav Virius, Jakub Judas

A Brief Comparison of Groovy and Smalltalk ... 15

Josef Smolka

Java Design Patterns Automation Survey ... 23

Markéta Horáková

Failures of Outsourcing of Software Development .. 39

Aziz Ahmad Rais, Rudolf Pecinovský

Software Process Improvement in Small Companies 45

Alena Buchalcevová

Petri Nets versus UML State Machines .. . 53

Karel Richta

Case Study of Legacy Systems - Converting and Improvement 61

Martin Chlumecký

A New Approach to the Prediction of Software Projects and the

DYPREP Method .. . 71

Jan Bartoška, Jan Doležal, Branislav Lacko

Brief description of software architecture design patterns 77

Matej Meško

Advanced tool for source code recognition .. 87

Tomáš Bublík

Parallel Programming With NVIDIA CUDA 97

Vladimír Španihel

Economic Time Series as Objects and Principal Component Analysis 103

Radek H ebíkř

Model-Driven Development of a Banking Multichannel Solution115

Petr Smolik

Teaching Object-oriented Programming using Object Benches -

Practical Experience ..125

Jakub Livovský, Miroslav Bi as, Jaroslav Porubň än

Development of dictionary writing software .. 133

Kamil Barbierik, Martina Holcová Habrová, Vladimír Jarý, Pavla Kochová, Tomáš

Liška, Zde ka Opavská, Miroslav Viriusň

Tool for Statistical Classification of Java Projects ..149

Michal Rost, Josef Smolka, Matej Mojzeš, Miroslav Virius

Lessons learned from a case study of scrum adoption at complex system

integration project ... 157

Jakub Balada

Functional Programming Constructs and Their Integration into Lessons

of Object Oriented Architecture ..165

Rudolf Pecinovský

Author index ..173

LINQ preprocessor for the C++

Jakub Judas, Miroslav Virius

miroslav.virius@fjfi.cvut.cz

Czech Technical University in Prague, Faculty of Nuclear Sciences and Physical
Engineering, Praha 2, Trojanova 13

Abstract. An implementation of the LINQ preprocessor for the C++
programming language is presented. Syntactic rules for the queries are
derived from the LINQ specification in the C# version 3 programming
language. Our implementation allows the queries to the vector< > ob-
jects, but the extension to other data sources is rather straightforward.

Keywords: LINQ, preprocessor, C#, vector class.

1 Introduction

Query mechanisms similar to the LINQ in the C# are common extensions in
many contemporary programming languages, except the C++. In this article
we present an implementation suitable for the C++ programming language con-
forming to the [1] international standard. Our implementation consists of

– the preprocessor that translates the C++ program containing the queries to
pure C++ code,

– the header files containing the necessary declarations of auxiliary classes and
functions.

The header files contain even the method bodies, because the classes and
functions are mostly implemented as templates. The only data source supported
in this version of our LINQ preprocessor is the vector< > template class from
the C++ standard library; nevertheless, it is easy to extend it for other data
STL containers or for user’s own classes.

1.1 LINQ

The acronym LINQ stands for the Language Internal Query; it was originally
the part of the C# programming language and its specification can be found
e.g. in [2], [3]. The LINQ query is a kind of expression composed of special
keywords, variable declarations and conditions specifying the desired data. These
expressions are similar to the SQL queries. An example of a simple query in the
C# language is

from point in SetOfPoints where point.x < 0

select Math.Abs(point.y)

This expression selects all points with negative x coordinate from the SetOf-
Points container that serves as the data source and constructs an object that
will contain absolute values of their y coordinates.

In this example, from is the keyword that starts the query and point is
an auxiliary variable that will be used to access individual data pieces selected
from the data source SetOfPoints. The where operator introduces the condition
describing the desired data items and the select operator starts the so called
projection – an expression describing, what to do with the selected data.

The result of the query behaves like a container, even though the lazy evalu-
ation is usually applied – next data item is read from the source and processed
when a new data item is asked from the result of the query. The queries are
translated to a series of invocations of extension methods in C#.

Note that this example does not show all the possibilities of the LINQ in
C#. Here is the short review of the remaining LINQ keywords:

– The let operator may be used to introduce another auxiliary variable,
– the orderby operator may be used to order (“sort”) the result,
– the group by operator may be used to organize the result into groups,
– the join operator may be used to join the results of several queries,
– the descending operator in the order by clause forces the result to be ar-

ranged in the descending order.

1.2 Our Implementation of LINQ in C++

Our implementation of the LINQ queries in C++ consists of several header files
and of the preprocessor linq that converts the queries in into a series of invoca-
tions of methods of auxiliary template classes that are defined in the header files.
The linq preprocessor has to be called before the standard C++ preprocessor
(that is usually part of the C++ compiler). It requires the C++ implementation
conforming at least partially to the [1] standard – viz. the lambda expressions
and the auto keyword in the new meaning.

2 Existing Implementations

There are several implementations of LINQ for C++ available, but they are
based on different principles than ours. We describe two of them shortly here.

2.1 cpplinq

The cpplinq implementation (see [4]) may be used in Windows with the Visual
C++ 2010, Visual C++ 2012 and g++ v4.7.0 compilers; in Linux it may be
used with g++ v4.7.0 and clang++ v3.1 compilers. It is based on the use of

the lambda expressions and some other advanced features of the C++11. The
regular C++ arrays and the STL containers may be used as data sources.

This implementation does not support the queries in the form shown in the
previous section. Instead, the queries use predefined classes and functions and
the overloaded >> operator. The following example has been adopted from [4].
Assume we have an array of integers, ar_ints, and we need to extract all even
numbers, arrange them in ascending order and store them in a vector<>. This
is done by the following function:

#include "cpplinq.hpp"

int compute_a_sum_of_evens (int* arr_ints) {

using namespace cpplinq;

return

from_array (arr_ints)

>> where ([](int i) {return i%2 ==0;})

// Keep only even numbers

>> orderby_ascending ([](int i) {return i;})

// Sort them

>> to_vector (); // Sum remaining numbers

}

In this example, from_array(), where(), orderby_ascending() etc. are
functions returning instances of predefined classes.

Note that this implementation is contained in one header file.

2.2 boolinq

The boolinq implementation (see [5]) may be used with the latest versions of
the C++ compilers; more detailed information could not be found. As well as
cpplinq, it is based on advanced features of the C++11. The regular C++ arrays,
the STL containers and some Qt containers may be used as data sources.

The queries in this implementation have the form of a series of method calls.
The following example is adopted from [5].

int arr_int[] = {1, 2, 3, 4, 5, 6, 7, 8}; // data source

auto dst = from(arr_int).where([](int a){return a%2 == 1;})

.select([](int a){return a*2;})

.where([](int a){return a>2 && a<12;})

.toVector();

This query selects all odd numbers from the data source, computes their squares,
selects those lying between 2 and 12 and stores them into a vector<> instance.

3 linq preprocessor

Our implementation enables using queries similar to the form usual in C# in
C++ source code. As stated earlier, it consists of several header files and the

linq preprocessor. The user has to include the linq.h header file. The source
file has to be processed by the linq program before the compilation. This can be
arranged in the makefile.

This preprocessor may be used with any C++ compiler implementing the
lambda expressions and the auto keyword in the new sense. Only the STL
vector<> instance can be used as a data source in the current version.

The syntax of the query differs from the C# syntax only slightly. The main
difference is that the type of the auxiliary variable in the from clause has to be
declared always. The linq preprocessor translates the LINQ expressions into a
series of method calls. Consider the query

from int x in array where x%10>5 select x*2

that selects from the array instance of the vector<int> class the squares of
all integers that give the remainder greater than 5 when divided by 10. The
result is the pointer to the LinqVectorExpression<int> instance. The instance
of this auxiliary class contains a vector<> instance with the query result as a
data member. This query is translated to the following sequence of function and
method calls:

From(array)->Where([]{int x}{return x%10>5})->

Select<int>([int x]{return x*2})->getData();

The condition expression in the where clause, as well as in the projection, is
translated to the lambda expression. Note that you may use our LINQ imple-
mentation without the preprocessor, if you write the queries this way.

4 Implementation

The linq preprocessor is based on our formal specification of the LINQ expres-
sions (see [6]), which has been derived from the specification in [3]. The compila-
tion uses the so called island grammar – only the LINQ expressions are compiled,
the remaining code is left unchanged.

The compilation of any source code usually consists of the following phases:

1. Lexical analysis,
2. syntactic analysis,
3. semantic analysis,
4. generation of intermediate code,
5. generation of the final code.

We can omit the semantic analysis and the intermediate code generation,
because these phases will be done during the compilation of the resulting code by
the standard C++ compiler. The remaining phases are discussed in the following
subsections.

4.1 Lexical analysis

During the lexical analysis, the program is decomposed into tokens that are
characterized by the pairs composed of the token name and the token position.
This is done by a state machine generated by the lexer generator lex [7]. (We
have used the GNU implementation of lex known as Flex.) The input of the
Flex is composed of the rules for individual token types. Any rule consists of the
regular expression describing the token followed by the C statement that should
be performed when the token of this type is found. E.g., the rule for the from
keyword has the form

[^a-zA-Z_]"from"[^a-zA-Z] {LINQ_FROM_TOKEN(yytext)}

where LINQ_FROM_TOKEN is a macro defined in the program. Special token OTHERSYMBOL

is used for the C++ text that is not part of the LINQ query.

4.2 Syntactic analysis (parsing)

During the second phase, an internal representation of the program – the ab-
stract syntax tree (AST) – is built from the tokens. The parser used in the linq
preprocessor has been generated by the YACC parser generator [7] (we have
used the GNU implementation known as Bison). The input of the Bison is the
description of the syntactic rules of the LINQ expressions in a form similar to
– but not equal to – the Backus–Naur form. As usual, these rules describe the
non-terminal symbols using the terminal symbols or other non-terminal symbols.
E.g., the rule

from_generators: from_generator

| from_generator COMMA from_generators

;

defines, that the form generators non-terminal symbol may be either the from-
generator alone or the from generator followed by the COMMA symbol and

the form generators symbol. The from generator and COMMA non-terminal
symbols must be defined elsewhere. Note that special symbols other and words
were added; these symbols describe the C++ source code that is not part of any
LINQ expression.

4.3 Abstract Syntax Tree Nodes

It is necessary to locate the LINQ expressions and to split the original source
code in order to replace these expressions by the new code. After that, the AST is
constructed. Any node of the AST is represented by an instance of a specialized
class. All these classes have the following two methods:

– The print() method is invoked when the << operator is used. This method
invokes recursively the print() method of all its child nodes and outputs
the compilation result.

Fig. 1. Classes used for the representation of the query in AST (from [9])

– The compile() method translates the LINQ keywords to the C++ code. In
some cases – e.g. in nodes of the other type, that need not be translated –
this method does nothing.

Fig. 1 shows the class diagram of the main classes in the abstract syntax tree
for the LINQ expression with the vector<> data source.

5 Conclusion and Outlook

This implementation of the linq preprocessor has been tested with newest Win-
dows and Linux C++ compilers and has been published on the SourceForge web
pages [9]. The project documentation has been created by the Doxygen tool [8].
As stated earlier, the only data source supported in the current version is the
STL vector<>.

5.1 Extension to other data sources

The extension to other data sources is straightforward. To add the support of
the data source of type T, it is necessary to implement the set of classes with
appropriate methods. The From() function should have exactly one parameter
of type T; it should return an instance of the class that contains the Where(),

Fig. 2. The diagram of the possible sequences of function calls in the queries (from [9])

Select(), SelectMany(), OrderBy(), OrderByDescending() and GroupBy()

methods. The possible sequences of method calls in the query are described by
the state diagram on Fig. 2.

These methods should accept the lambda expression as input parameter and
should return an instance of a class that supports the methods allowed in the
actual state according to Fig. 2.

Acknowledgement. This work was supported by grant no. SGS 11/167 of the
Ministry of Education, Youth and Sports of the Czech Republic.

References

1. International Standard ISO/IEC 14882:2011. Programming Languages — C++.
ISO, Genève 2011.

2. Magennis T.: LINQ to Objects Using C# 4.0. Addison-Wesley 2010. ISBN 978-0-
321-637000-0.

3. C# Language Specification. Version 5. Microsoft Corporation 2012. Available at
http://www.microsoft.com/en-us/download/details.aspx?id=7029 [Accessed July
13, 2013].

4. LINQ for C++. Available at http://cpplinq.codeplex.com/ [Accessed July 13, 2013]
5. boolinq. C++ header-only Ranges and LINQ template library. Available at

https://code.google.com/p/boolinq/. [Accessed July 13, 2013]
6. Judas J.: The implementation of the LINQ preprocessor for the C++ programming

language. Czech Technical University in Prague 2013. [Diploma project, in Czech]
7. Levine J. R., Mason, T., Brown, D. lex & yacc (2 ed.). O’Reilly 1992. ISBN 1-56592-

000-7.
8. Doxygen. Available at http://www.stack.nl/ dimitri/doxygen/ [Accessed July 13,

2013].
9. Linq to C++. Available at http://sourceforge.net/projects/linqtoc/?source =direc-

tory [Accessed July 13, 2013]

A Brief Comparison of Groovy and Smalltalk

Josef Smolka

Department of Software Engineering, Faculty of Nuclear Sciences and Physical
Engineering, CTU in Prague
smolkjos@fjfi.cvut.cz

Abstract. The paper gives a brief comparison of the Smalltalk and
Groovy languages from a viewpoint of a nowadays developer, who is not
writing his own sorting procedure, but must design and implement com-
plex information systems and advanced web and graphical applications.

Keywords: Groovy, Smalltalk, XML, history

1 Introduction

An era in which a programmers task was to write a simple database of telephone
numbers and sort it according to owners names is history. Nowadays developer
has to deal with much more complex and more abstract assignments, which
are complicated by integrations and various targeting platforms ranging from
numerous mobile platforms to monstrous enterprise class middleware. This paper
offers a brief comparison of both languages considering the needs of such a
developer. Goal of the paper is not to decide which language is better, but
to put the best from both worlds to one place. Let first compare history and
evolution of the languages, to get a better understanding of an environment in
which the languages were born.

It is early sixties when Alan C. Kay is discovering Sketchpad and Simula and
thus getting the feeling of OOP in the form of master and instance drawings
(case of Sketchpad) and activities and processes (case of Simula). It is an era, in
which the idea of a personal computer is emerging. In these times, a programming
language and a programming environment are integral part of the computer and
greatly influence overall user experience. Between years 1967 and 1969, Kay is
cooperating with Dave Evans on the design of FLEX machine. While Evans
is concerned with the hardware, Kay is contemplating on software to support
the hardware, influenced by his encounters with Sketchpad, Simula, Algol, Euler,
Joss, Logo and Grail. Conference on Extensible Languages, which is held in 1969,
gives Kay the idea of interpreted language as opposed to compiled ones, which is
a standard in these times. In 1969, Kay is also getting the idea of access control
to objects internals from CAL-TSS system. In this system pointers are enhanced
by a bitmask specifying the access restrictions. In the context of the Smalltalk
history, the beginning of seventies belongs to Xerox research center in Palo Alto,
California, particularly to Kays Learning Research Group (LRC) contemplating
on the ideas of small personal computer - notebook. In 71, Kay is refining his

idea of KiddiKomp machine into a new concept miniCOM, computer with new
programming language called Smalltalk, indicating that programming should
not be cryptic mystery but easy understandable even by children. Smalltalk-71
is born. Next year is a year of bets. One of bets between Ted Kaehler, Dan
Ingalls and Kay is about how large a language must be to have great power.
Kay is declaring that the most powerful language in the world can be defined in
a page of code. Kay is getting done the concept; Ingalls is later implementing it
in BASIC. First version of Smalltalk-72 is born [8]. By the end of year 1972, six
basic principles are drawn [10]:

– Everything is an object.
– Objects communicate by sending and receiving messages.
– Objects have their own memory.
– Every object is an instance of a class.
– The class holds the shared behavior for its instances.
– To evaluate a program list, control is passed to the first object and the

remainder is treated as its message.

This list can be considered as mantra for the new Smalltalk programming lan-
guage, which is succeeded by Smalltalk-74 and Smalltalk-76. These versions bring
new virtual memory system with garbage collection procedures. During further
years Smalltalk is given much more attention even by Xerox executive board.
Many demos of Smalltalk features are done. During one presentation for Apple
in 1979, Steve Jobs says that he does not like the way the content is scrolled
on the screen in the presented application and asks if it could not be scrolled
in a smooth continuous style. Dan Ingalls does the required change in less than
minute and the change is immediately reflected in the application. This story
nicely demonstrates the incremental power of Smalltalk which is missing to ma-
jority languages even nowadays. In 1980, major release of Smalltalk, Smalltalk-
80, is published [7]. It is based on Smalltalk-78 which was developed parallel
to NoteTaker application. Two main branches are derived from Smalltalk-80:
Squeak derived from the first version of Smalltalk-80 and VisualWorks derived
from the second version [10, 9]. Business success of Smalltalk in nineties is com-
plicated by several factors including high price, intensive memory requirements
and lacking support of raising SQL databases. The position of Smalltalk is even
more complicated by the birth of Java (1996, JDK 1.0), as Sun is choosing for
Java much more liberal distribution model and Java is available for download
from java.sun.com for free.

Back in eighties, two years after the release of Smalltalk-80 another event im-
portant to this story occurs and also in Palo Alto. Andy Bechtolsheim, graduate
student of Standford University is founding in cooperation with Vinod Khosla
and Scott McNealy new company Sun Microsystems. Eight years after that, Sun
is a prospering company and can also afford to carry out project contemplating
on feature of computing and computers as was common in seventies. Project
Green is expected to bring answers to questions what will the computer market
looks like in the near future. The answer of involved prophets is that the future
lays in fusion of computers with consumer electronics. The result of this vision

is small PDA Star 7 targeted to cable companies as a smart remote controller
for televisions. The side product of this PDA is a new language intended for pro-
gramming of devices like Star 7. The language is designed by James Gosling and
named after a tree, which grows in front of the Goslings office - Oak. Thanks to
this language and the WebRunner browser, the first dynamic content is brought
to internet. In 1994 Oak is renamed to Java, as the name Oak is used already
by another company. Since the first public release in 1996 to present days, Java
has undergone gradual development; rather an evolution then a revolution. The
Java platform, governed by Java Community Process, is quite conservative con-
cerning adoption of new ideas. This has positive effect on adoption of the Java
platform by enterprise domain as fundamental core of enterprise middleware. On
the other hand, the Java language is still lacking demanded features like closures,
list literals, multiple return values and others [5]. This is creating a space for new
languages to fill in the gaps created by slow evolution of Java. In 2003, James
Strachan, the author of Groovy, is playing with dynamic languages, Python and
Ruby, and with their respective JVM versions, Jython and JRuby, and feel a ne-
cessity to complement the overall complex (but lacking core functionalities at the
same time) and sometimes problematic original language of the Java platform
with something new and fresh [11]. Dynamic languages like Python, Ruby and
even Javascript enjoy great popularity by present developers, but transition to
the Java platform is not so straightforward and JVM implementations of these
languages suffer from it. This is the main motivation for designing new language
from the ground, which would resemble Java in core syntax a compile directly
to the Java byte code. The language gets the name Groovy because it is built
on top of all the groovy parts of a Java code. At the beginning of 2007, the first
stable version 1.0 is released [11, 1]. Groovy, despite the fact that it is directly
compiled to byte-code, is criticized for its lack of performance. In 2012, Groovy
2.0 is released, which brings huge improvements in speed.

2 Method of comparison

The comparison of Smalltalk and Groovy is not focused on the language part
only, but it is also a comparison of the platforms and the support they give
to the hosting languages. Thus, the first part is dedicated to distribution model
comparison, mainstream IDEs and other supporting tools like versioning control,
frameworks for web, XML and services. The second part is focused on the lan-
guages themselves, comparing code efficiency and simplicity (expression power),
code portability and execution efficiency.

3 Language support

Every sentence “I want to code in Smalltalk” is sooner or later followed by “Wait,
there are so many implementations, which to choose?”. It can be confusing for
beginner to orient himself in various implementations that have their roots in
Smalltalk-80:

– VisualWorks - Derived from the second version of Smalltalk-80. It is a cross-
platform implementation and runs on variety of systems including Windows,
Mac OS X, Linux and several UNIX-type systems. It is freely available for
non-commercial use. Commercial license demands the company to share its
profit with the owner of VisualWorks.

– Squeak - Derived from the first version of Smalltalk-80. Squeak was origi-
nally developed by Apple and later developed by Walt Disney Imagineering.
Squeak is freely available under combination of MIT and Apache licenses [2].

– Pharo - Fork of Squeak created in 2008. The main focus of Pharo is to bring
users a clean and innovative open-source Smalltalk-like environment [3].

– GNU Smalltalk - Implementation under GNU project. It differs from main-
stream implementation in a way that it works with standard text files and
not with an image of the system. Advantage of GNU Smalltalk lays in native
bindings for libraries like SDL and SQLite [4].

As can be seen from the list, situation from nineties, when Smalltalk was
pure commercial product is history and variety of free implementations exists.
Besides the traditional implementations, there is also a variety of implementa-
tions for uncommon platforms like Amber Smalltalk, which runs atop JavaScript
or several implementations that run on Java Virtual Machine (Bistro, Athena).
In most cases, implementation contains platform specific virtual machine and
platform independent image containing development environment and standard
library.

A legacy of times in which Smalltalk was born is that in many cases the
Smalltalk has its own windows system (Squeak, Pharo) bypassing the main win-
dow manager. That can be inconvenient for people used to different schemas of
windows managing. On the other hand, platform independent GUI library is a
considerable advantage for multiplatform development. When it comes to ver-
sioning, standard tools like Subversion, Git and others do not work for Smalltalk
as these tools are file-based. Monticello is distributed optimistic semantic ver-
sioning system for Smalltalk. It can have several distributed remote or local
repositories and allows versions to move between the repositories. It is opti-
mistic in a way that it does allow to create new version from code available to
developer without version locking in repository or another similar mechanism.
Monticello does versioning on a semantic level and recognizes semantic struc-
tures as classes or methods. This helps the merging algorithm to behave in more
consistent way [2, 3].

With spread of personal computers, new style of systems architecture quickly
emerged the client/server architecture pattern. The more traditional client, pro-
grammed using native GUI library (thick client), is nowadays replaced in a great
portion of information systems by thin client running in web browser. Seaside is
Smalltalk web application programming framework consisting of HTML gener-
ators, action callbacks and advanced state and control flow management. Web
applications in Seaside are constructed using components. Every component is
responsible for a definition of user interface and the control flow. Rendering of
component HTML interface is done by provided generators; there is no mixing

of HTML and Smalltalk code. But there is also no support for templates, busi-
ness logic is combined with presentation logic. Every component has its own
control flow directed by actions. When an user clicks on a link, one component
goes further in its control flow and may display different content, while other
components remain the same. Seaside draws its power from the incremental de-
velopment model and debugging capabilities of the Smalltalk language itself [6].
While definitely more elegant during the development, the deployment phase
prevents Seaside from greater penetration in an enterprise environment. The
reason is lack of application middleware which could shield the application from
data source definitions and a connection pooling, from identity management
systems, thread pooling and provide a communication channels using messaging
queues. Seaside is not the only web framework available, others are AIDAweb
and Iliad. Lacking support of traditional SQL databases is another drawback,
Squeak has native binding for MySQL and PostgreSQL but that is all. Connec-
tion to another legacy databases (from the viewpoint of Smalltalk) is provided
by ODBC, but it is single-threaded and blocks the VM during the query. On
the other hand, Smalltalk ecosystem offers several object databases: GOODS,
Omnibase, SandstoneDB and Gemstone, where the last one seems to be the
most mature and enterprise ready. Another drawback is lacking strong support
for nowadays standards like SOAP, WS-*, WSDL, UDDI and other technologies
used for implementing service-oriented systems. This all complicates the position
of Smalltalk in a decision process of a system architect.

Groovy is built atop the Java platform, which is widely spread and adopted by
enterprise sphere. It is alternative language for Java platform compiled directly
to byte-code interpretable by Java Virtual Machine. The extended language syn-
tax and features are inspired by Ruby, Python and Smalltalk, but the core is
quite similar to original Java, thus the language is easily adopted by Java pro-
grammers. Groovy is distributed as a package containing compiler and standard
library. Groovy can be used in two modes, as a primary language compiled to
byte-code or as a scripting language within the Java code. In both cases, arbi-
trary Java library can be used in Groovy which gives Groovy all the strength of
the Java platform. Groovy is fully supported in mainstream Java development
environments like IntelliJ IDEA, Eclipse and NetBeans and several coding ed-
itors like Emacs, JEdit and TextMate. Making of GUI applications in Groovy
is backed by Javas Swing framework and SwingBuilder, which allows creating
of full-fledged Swing GUI in a declarative manner. When there is a need for
complex application framework for building desktop applications, Groovy plat-
form can offer the Griffon framework following the convention over configuration
paradigm and providing intuitive MVC pattern implementation. Versioning on
Java platform is ensured by standard developments tools like CVS, Subversion,
Mercurial, Git and others, there is no need for a special tool just for Groovy.

Nowadays, Groovy is perhaps mostly known through its web framework
called Grails. It takes over ideas like convention over configuration from Ruby
framework Ruby on Rails, and it is based on one of the most acclaimed J2EE
frameworks Spring. The Spring framework is providing its lightweight inver-

sion of control container enabling Grails to use automatic dependency injection.
Object relation mapping is ensured by proven Hibernate library.

4 Language efficiency

Java is often justly criticized for its chatty syntax. In contrast, the syntax of
Smalltalk is much more elegant, using minimalistic form for message sending,
code blocks and lambda expressions. As Groovy is inspired by Smalltalk, the
syntax of Groovy, while still faithful to its Java roots, contains new constructs
for list literals, lambda expressions, closures and others. Let take a look at very
simple example which consists of XML parsing.

The Pharo way

|xml a|

xml := ’testxml.xml’ asFileReference readStream contents .

a := (1 to: 25) collect: [:x |

Time millisecondsToRun: [XMLDOMParser parseDocumentFrom: xml]

].

Transcript show: a sum / a size asFloat .

The Groovy way

def xml = new File("testxml.xml").getText()

def a = (1 .. 25).collect{x ->

millisecondsToRun{new XmlParser().parseText(xml)}

}

println a.sum() / a.size()

It can be seen from examples that Groovy resembles the syntax of Smalltalk
in many ways. This example was also used for performance measurement. Let
assume, that application like service bus, which routes and transforms XML
messages, is going to be programmed. Thus, performance in XML parsing is
critical to such application. Measurements were taken on following configuration:
Intel Core i7, 2.67 GHz, 8 GB RAM, Windows 7 64b using Groovy 2.1.7 with
Java 1.7 64b, Pharo 2.0 (update #20621) and Squeak 4.3 (update #11860).
XML parsers were used in default configurations.

The table 1 shows that Groovy outperforms free distributions of Smalltalk
in XML processing. The worst candidate for service bus implementation is defi-
nitely Pharo, while Squeak is comparable to Groovy.

5 Conclusion

The paper gave a comparison of Smalltalk and Groovy languages based on needs
of nowadays developer. The comparison started with historical background of

Table 1. Execution times of XML parsing for Pharo, Squeak and Groovy.

Language XML Size Execution time

Groovy 2.95 MB 82.84 ms
Pharo 2.95 MB 1337.0 ms
Squeak 2.95 MB 133.52 ms

Groovy 29.5 MB 653.8 ms
Pharo 29.5 MB 20580.36 ms
Squeak 29.5 MB 1918.92 ms

both languages and continued with comparison of platforms and languages per-
formance in XML parsing. The result shows that there is a substantial differ-
ence in various Smalltalk implementations. The results also indicate that Groovy
could bring sufficient performance for services implementation while still offer-
ing the comfort of the Smalltalk syntax. The substantial drawback of Groovy
is hidden in Java platform itself - lacking debugger functionality that can be
hardly compared to incremental development capabilities of Smalltalk.

Acknowledgment. Creation of this paper was supported by grants SGS11/
167/OHK4/3T/14 and LA08015.

References

1. Batsov, B.: Java.next()–the Groovy Programming Language.
http://batsov.com/articles/2011/05/06/jvm-langs-groovy/ [2013-09-29]

2. Black, Andrew, et al.: Squeak by example. (2007). http://squeakbyexample.org
[2013-09-29]

3. Black, Andrew, et al.: Pharo by example. (2009). http://pharobyexample.org
[2013-09-29]

4. Byrne, S., Bonzini P., Valencia, A.: GNU Smalltalk User’s Guide. (1990)
5. Devijver, S.: Groovy Will Replace the Java Language as Dominant Language.

http://groovy.dzone.com/news /groovy-will-replace-java-langu

[2013-09-29].
6. Ducasse, S., Lienhard, A.,Renggli, L.: Seasidea multiple control flow web

application framework. Proceedings ESUG 2004 International ConferenceResearch
Track, volume Technical Report IAM-04-008. (2004)

7. Goldberg, A.: SMALLTALK-80: the interactive programming environment.
Addison-Wesley Longman Publishing Co., Inc. (1984)

8. Ingalls, D.: The Smalltalk-76 programming system design and implementation.
Proceedings of the 5th ACM SIGACT-SIGPLAN symposium on Principles of
programming languages. ACM. (1978)

9. Ingalls, Dan, et al.: Back to the future: the story of Squeak, a practical Smalltalk
written in itself. ACM SIGPLAN Notices 32.10, 318–326 (1997)

10. Kay, Alan C.: The early history of Smalltalk. History of programming
languages–II, 511-598 (1996)

11. Strachan, J.: Groovy–The Birth of a New Dynamic Language for the Java
Platform. http://radio-weblogs.com /0112098/2003/08/29.html#a399

[2013-09-29].

Java Design Patterns Automation Survey

Marketa Horakova

Department of Informatics and Quantitative Methods, Faculty of Informatics and Management,

University of Hradec Kralove, Czech Republic

Marketa.Horakova.4@uhk.cz

Abstract: This paper examines the current possibilities and research activities in

the area of design patterns automation and how it is supported in CASE tools

dedicated for Java developers. The submission provides classification of the

CASE tools according to the level of automation that facilitates design patterns

usage and application in the software development life cycle and describes

examples of these tools suitable for Java developers.

Keywords: Object-oriented Programming, Java, Design Patterns, CASE Tools

1 Introduction

Design patterns solve the common design and programming problems, make the

software design more flexible and reusable and thus represent the best practices in

object-oriented software design and development.

As the design pattern automation can be marked an approach that, in any degree,

automates the application of design patterns at the implementation stage of the

software development process.

This survey examines CASE tools suitable for Java developers that support

design pattern automation. The scope of the article is thus focused on Java

programming language, although the implementation of design patterns can be done

in any object-oriented language; initially the patterns have been implemented in C++

or Smalltalk code.

First of all the paper provides an overview of design patterns and their principles.

Then it is concerned with the design pattern automation definition and classification

of related development tools and environments. After that the tools suitable for Java

developers are listed for each of defined categories and their pros and cons are

discussed. Finally, the two examples of expert systems focused on advising of design

patterns application for novice software designers and developers are described.

2 Design Patterns

The authors of the key book about design patterns, [1], defined the term design

pattern as “a description of communicating objects and classes that are customized to

solve a general design problem in a particular context”. Now the design patterns are

considered to be the best practices used in many recurring design problems.

mailto:Marketa.Horakova.4@uhk.cz

As Freeman [2] explains, a pattern is a solution to a problem in a context and the

context is the situation in which the pattern applies. Design patterns solve the

common software design problems during object-oriented application development.

The solutions described by the pattern are usually general and can be applied in

several common situations. On the other hand, the general solution can be also

implemented in several ways, so in the next parts of the article we will face

difficulties in some tasks related to automation of design patterns usage and

recognition.

2.1 Design Patterns Description

Design pattern can be identified by name and by participating classes and instances

and relationships between them. The next attribute of design pattern is usually

description of the situation, specification of the object-oriented design problem, when

it can be applied.

Gamma et al. [1] pointed out four essential elements of the design pattern:

1. The pattern name is an important part of the pattern as it makes a handle that is

used to be shared between the developers; usually the name summarizes the problem

and its solution in one or two words.

2. The problem describes the problematic situation within its context when it is

advantageous to apply the pattern. Usually it describes specific object-oriented design

problems.

3. The solution describes the classes and their collaborations and responsibilities

that form the design in general way. The solution and the structure of design pattern

can be typified by one of the graphical notations. The essential patterns defined in [1]

have been represented in the notation based on the Object Modeling Technique

(OMT), which is a predecessor of Unified Modeling Language (UML) used heavily

nowadays.

4. The consequences are the results or effects that applying the pattern could have

and they can be both positive and negative. According to [1], this element can help to

understand the costs and benefits of applying the pattern. The consequences of

a pattern include also impact on flexibility and extensibility of a software system, so

they should be red carefully.

2.2 Design Patterns Categories

Design patterns are most frequently classified into three groups according to their

main intent.

Creational design patterns deal with the process of object instantiation; the three

main representatives of this are the Factory Method Pattern, the Abstract Factory

Pattern and the Singleton Pattern. Another patterns belonging to this group are the

Builder Pattern or the Prototype Pattern.

Structural patterns involve the composition of classes or objects into larger

structures. Following patterns deal with the objects composition: the Decorator

Pattern, the Adapter Pattern, the Façade Pattern, etc.

Behavioral patterns characterize how classes or objects interact and distribute

responsibility; the following two patterns are great examples of it: the Strategy Pattern

and the Observer Pattern. The another representatives of this patterns group are the

Command Pattern, Visitor Pattern and the State or Template Patterns

Another distribution of the design patterns can be done according to their scope.

Pattern can be either applied primarily to classes, or objects. The class patterns are

more static and relationships between classes are implemented via class inheritance.

Object patterns are more dynamic and deal with object relationships that can be

changed at program run-time.

2.3 Design Patterns Purpose

The main advantages of design pattern applying recognized by [1] include following

areas:

 Facilitation of reusing the proven and successful designs and architectures.

Software development companies often maintain a design patterns catalog to

make these solutions more accessible to developers.

 Design patterns descriptions help simplify the choice of design alternatives

that make a system better flexible or reusable.

 Design patterns specification can improve the documentation, understanding

and maintenance of existing systems.

3 Design Patterns Automation

According to [3], design patterns automation may be defined as an approach that

applies design patterns at the implementation stage of the software development life

cycle.

The first publication that mention this term is [4] and author defines it as an

approach of applying design patterns to software construction.

In this article, the design pattern automation means an approach that in any

degree automates the application of design patterns during the software development

or maintenance process.

In the next parts of this submission we shall see that this automated design

patterns application can be beneficial in the design stage, for example during system’s

UML diagram creation, in the implementation phase, directly in the integrated

development environments or during the reengineering or maintenance process.

3.1 Design Patterns Automation Purpose

The original purpose of design patterns automation is to accelerate and simplify the

design pattern usage and applying during the design and implementation stage of

software development.

The further levels of design pattern automation, specifically automatic pattern

discovery, can be beneficial also in the following areas, as noted in [5]:

 Code optimization.

 Software documentation management.

 Program model verification.

 Program design recovery.

 Reverse engineering.

 Bug finding.

 Security vulnerabilities discovery.

3.2 Design Patterns Automation: CASE Tools Classification

The four main categories of design patterns support in development environments and

CASE tools can be recognized according to the level of automation:

 UML modeling tools and their support of pattern application tasks within the

model editor.

 Integrated development environments (IDEs) and their support of pattern

application in the code editor.

 Code analysis tools focused on automated design patterns recognizing.

 Expert systems that combine design patterns discovery techniques with the

knowledge base related to patterns usage and which intent is to advise the best

design patterns application to software developers.

UML Modeling Software Environments

The UML modeling tools and their features to simplify design patterns application

into the model can be beneficial in the forward engineering process.

Forward engineering deals with the transition from the high-level or abstract

design model of a system into its physical implementation. The UML models of

classes and relationships between them can be used in this context for automatic

platform-specific code generation; this topic is examines e.g. in [6].

According to the level of design pattern automation, modeling tools can be

divided into following groups [4]:

 Static – tools that enable inserting a group of design pattern classes into the

modeling workspace

 Dynamic – tools that integrate selected design patterns classes with existing

classes

 Wizards – tools that provide a wizard for each pattern, in which developer can

customize the selected pattern

Chapter 4 of this article examines the possibilities of design pattern automation in

UML modeling tools.

Development Tools and Environments

Similarly to modeling CASE tools, the following levels of design pattern automation

can be observed in software development environments:

 Static – tools that enable inserting a group of classes into the project

 Dynamic – tools that automatically refactor existing classes and method

according to the inserted pattern

 Wizards – tools that provide a wizard for pattern application

Design patterns automation functionality is often available via plug-ins for

integrated development environments (Eclipse IDE), or it is directly integrated in the

environment (NetBeans IDE). Part 5 of the article provides examples of these tools.

Design Patterns Detection Tools

Another group of development tools with high level design pattern automation is

created by tools for automatic design patterns discovery in the current code. They are

mostly used for reverse engineering.

Reverse engineering, as opposed to the forward engineering, require code

analysis in order to detect high-level model of a system and its components. Lande [7]

defines the term as follows: “The concept of reverse engineering refers to a variety of

practices undertaken to understand how a software program is built and how it

achieves its functionality.”

Chapter 6 contains an overview of design patterns detection approaches suitable

for Java code analysis.

Advanced Design Patterns Automation Tools

Advanced design pattern automation tools include expert systems that can help the

novice software developers with the choosing and application of design patterns. Two

such systems are described in the part 7.

4 UML Modeling Software Environments

The first paper that explores the state of pattern automation in the UML modeling

software was produced by [4]. In that time the UML environments began to introduce

support for design patterns and the survey presents some of them and provides also

their comparison according to the level of automation.

Author [4] compares UML modeling tools according to the level of design

patterns automation and defines three main categories of these tools:

Static group of these tools enables basic insertion of design pattern classes into

the modeling workspace. Advantage of these tools is modeling time saving, but the

inserted elements must be then manually customized.

Dynamic support of design patterns enables automatic integration of design

patterns classes selected for inserting into the workspace with existing classes.

Classes and relationships are renamed and updated automatically, so the developer

does not have full control when applying selected pattern.

The best approach seems to be the Wizard feature for each pattern. Wizards offer

specific customization of the design pattern before its elements are inserted into the

workspace.

All these types of design pattern automation tools so far described do not replace

the designer’s deliberations if to apply the pattern in current design or what pattern to

choose, tools those advise pattern selection will be mentioned in the chapter 7.

Bulka [4] compares following three UML tools: ModelMaker [8], UML Studio

[9] and Together [10]. Dascalu [3] pointed out, that all the UML-based design

patterns automation tools use graphical user interface to customize design pattern

before inserting it into the workspace. Together uses dialog boxes, ModelMaker and

UML Studio use wizards. ModelMaker is a refactoring and UML modeling tool for

Delphi and C#, so it is out of scope of this article. Together and UML Studio can be

beneficial also for Java software system designers.

UML Studio

UML Studio [9] is a modeling tool for object-oriented model. It allows documentation

and code generation in many programming languages including Java, so it can be

used in the forward engineering process. The code generation is based on scripts that

users can customize. As described by [3], UML Studio use wizards when inserting

design pattern into the UML model.

Together

Together [10] is a software modeling tool that enables code generation from UML

diagram into Java and contains support for design patterns. Dascalu [3] provides

description of design pattern automation in Together via dialog boxes. First of all the

user choose a pattern to use, then the dialog appears with all the necessary parameters

for pattern and user can customize the pattern properties before the UML diagram is

created.

Rational Rose Modeler

Rational Rose [11] is a set of products for software system modeling and development

provided by IBM. The tool Rational Rose Modeler intended for UML modeling

enables code generation from visual models and supports also patterns-based

modeling.

Description of principles, how Rational Rose products support patterns

automation in previous versions, provides e.g. [12]. The design pattern class diagram

can be inserted into modeling workspace as a static element, similarly to inserting

classes or interfaces. Design pattern static elements contain description according to

pattern catalog defined in [1]. Also the dynamic aspects of each pattern are taken into

account. So the collaboration, sequence, and activity diagrams for each pattern and its

components are also stored in the tool.

The comparison between older versions of Rational Rose UML tools and

Together tool based on design pattern support provides [13]. The comparison used

criterions like patterns supported, implementation languages supported, source code

generation, support of pattern creation, etc. and both tools has been assessed as being

analogue in the area of design patterns support.

Enterprise Architect

Enterprise Architect [14] is another example of visual modeling platform for UML

diagram creation and code generation into more than ten programming languages.

Elements of design patterns can be also inserted into the modeling workspace easily.

The extension for Enterprise Architect with design pattern catalog and definition can

be downloaded from the tool web site.

5 Development Tools and Environments

Similarly to UML CASE tools we can observe basic design pattern automation

support in integrated development environments focused on programming code

editing.

5.1 Eclipse IDE and Platform

Eclipse is a software development platform that among others supports Java language.

Eclipse platform supports also user-developed plugins to add new functionality to the

IDE.

According to [15], “The Eclipse Platform subproject provides the core

frameworks and services upon which all plug-in extensions are created. It also

provides the runtime in which plug-ins are loaded, integrated, and executed.” The

Eclipse implementation itself includes the usage of many design patterns, the

architecture with respect to design patterns is described e.g. in [16].

So it is not any surprise that there are several Eclipse plug-ins that support design

pattern automation; brief overview of some such tools follows.

PatternBox

PatternBox [17] is an editor for Eclipse focused on the work with design patterns. The

tool creates Java classes and interfaces according to the selected pattern and they can

be customized depending on the application needs.

PatternBox plug-in provides extension to Eclipse's Java development tooling and

the Plug-in Development Environment and allows template based code generating.

 PatternBox tool generates a special file that represents the pattern and can be

customized, e.g. location of the pattern can be chosen. Then the tool generates sample

code of that element of the pattern.

Pattern Wizard

Vandyke [18] proposes in his article solution called Pattern Wizard. This tool differs

from the PatternBox. While PatternBox enables only generation of the new code,

proposed Pattern Wizard contains functionality that enables current code modifying,

which requires ability to code reading and parsing.

Design Pattern Toolkit

Design Pattern Toolkit is an Eclipse plugin similar to PatternBox that enables

generation of the Java source code for design patterns. For this purposes it uses XML

templates. The intent of this tool summarizes [19]: “The idea is that experienced

developers create templates for standard code structures that inexperienced developers

then use to generate those code structures for the specific needs of their custom

applications.”

Java Pattern Wizard

The Java Pattern Wizard [20] is another tool based on Eclipse that allows design

pattern classes generation. It was included in the CodePro products in the past. The

solution provides a pattern wizard that enables to modify properties of pattern

selection, pattern instantiation and code generation.

5.2 Other Tools and IDEs

NetBeans IDE

NetBeans [21] is, similarly to Eclipse, a popular open-source development

environment supporting several programming languages. NetBeans IDE includes also

UML facilities and design patterns support.

As [22] describes, IDE in the version 6.5 contains an ‘UML diagrammer’ that

enables code generation by using Freemarker templates. It supports all design patterns

defined in [1] that can be inserted into the workspace. Before insertion, the patterns

can be customized by wizard, e.g. existing classes can be selected to fulfill pattern

roles.

DPAToolkit

According to [23], the Design Pattern Automation Toolkit is “a tool to help in

software development via design patterns. The design can be visualized via class

diagrams and design patterns can be incorporated into the design easily.” The design

patterns are stored in XML format.

The tool supports forward engineering process as the code generation is enabled

into the several languages, and also reverse engineering as it allows to some extent

creation of class diagram from the code.

6 Design Patterns Detection Tools

Another extensive group of tools with high level design pattern automation is focused

on automatic design patterns recognition in current code.

Discovering of design patterns from the source code can help to understand the

system and support the process of re-engineering. It can be useful also for gaining the

original architecture of the system and simplifying the system maintenance. Design

patterns detection tools are also heavily used for reverse engineering.

Jakubik [24] remarks two main approaches in code analysis:

 Static (structural) analysis - static structure of a software system is compared

with static structure of a design pattern.

 Dynamic (behavioral) analysis - compares behavioral representation of design

pattern and behavioral representation of running system. However, this kind of

analysis is dependent on the executed part of system.

In general, the design pattern discovery in the code can be quite successful for the

patterns with unique class structure, the most problematic patterns for the detection

are those that have similar structure and differ only in their intent. Sindelar [25]

provides an example with the Bridge and the Adapter pattern: “The Bridge is used

during the design phase, but the Adapter is used to wire up already existing classes”.

The first tools and approaches in the area of design patterns discovery were

mostly focused on inspection of C++ code, for example Columbus or Maisa [26].

After the Java became popular, approaches focused on Java code analysis started to

be researched as well. The overview of the automatic design pattern recognizing tools

for Java follows.

HEDGEHOG

One of the first tools focused on design patterns analysis in Java code is called

HEDGEHOG. Blewitt [27] pointed out the main principles of the tool: “Patterns are

defined in terms of variants, mini-patterns, and constraints in a pattern description

language called SPINE. These specifications are then processed by HEDGEHOG, an

automated proof tool that attempts to prove that Java source code meets these

specifications”.

Its main purpose is to verify patterns in Java code, but it could be used also as

a basic pattern detection tool by brute-force searching of existing code bases.

As [28] remarks to the usage of the HEDGEHOG as a pattern recognizer, the

user has to specify a target class and a target pattern to verify against.

PTIDEJ

PTIDEJ shortcut means Pattern Trace Identification, Detection, and Enhancement in

Java and according to [29] “the PTIDEJ project aims at developing a tool suite to

evaluate and to enhance the quality of object-oriented programs, promoting the use of

patterns, at language-, design-, or architectural-level”.

One of the first PTIDEJ modules focused on design pattern detection called EPI

(Efficient Pattern Identification). EPI used the algorithm that finds occurrences of

design patterns using bit-wise operations on a finite set of bit vectors representing

a program.

FUJABA

The Fujaba Tool Suite [30] is an open source CASE tool providing developers with

support for both forward and reverse engineering in Java and thus the name is an

acronym for “From UML to Java and back again”. It serves also as a implementation

tool for few design patterns detection algorithms, as it is described e.g. in [31].

DP-Miner

Dong et al. [32] present in the paper another approach and tool to discovering design

patterns by defining the structural characteristics of each design pattern in terms of

weight and matrix. System description is based on the XML Metadata Interchange

format for metadata that specifies how UML models are mapped into a XML file. The

XMI file then can be searched for patterns.

Crocopat

Crocopat is a tool that allows analyzing graph models of software projects in order to

find patterns written by Dirk Beyer.

As [33] explains, Crocopat uses binary decision diagrams to represent relations.

The design patterns deal heavily with the high-level design of classes and their

relationships which can be easy to express with relations.

Crocopat cannot parse Java code, so another tool has to be used in order to

transform Java code into an abstract syntax tree.

PINOT

Shi [28] presents a fully automated pattern detection tool for Java, called PINOT

(Pattern INference recOvery Tool). This tool is suitable for reverse engineering and

for this purpose the design pattern description has been updated and reclassified into

the new categories. Shi et al. observed promising results with this approach: “Based

on this reclassification, we automated the entire pattern recognition process using

only static program analysis. This relatively simple approach has proven effective.”

Pattern Detection Engine

Birkner [34] came up with an approach of design pattern detection that is using static

and dynamic analysis in Java application. Each design pattern has defined static and

dynamic definitions. The static definitions are used to find pattern instances during

the static analysis. Then the dynamic analysis starts that examines running

application.

Ontology-Based DPD Tool

Paper [5] presents an approach with ontology-based architecture for

pattern recognition. The proposed system searches for patterns by static source code

analysis.

 Kirasic [5] explains the main principles of the tool as follows: “The parser

subsystem translates the input code to AST (abstract syntax tree) that is constructed as

an XML tree. The OWL ontologies define code patterns and general programming

concepts. The analyzer subsystem constructs instances of the input code as ontology

individuals and asks the reasoner to classify them.”

MARPLE

Tosi et al. [35] present design pattern detection plug-in for Eclipse called MARPLE

(Metrics and Architecture Reconstruction Plug-in for Eclipse) that also uses static

source code analysis.

MARPLE approach to design pattern detection is based on the detection of

design pattern subcomponents which indicate the presence of patterns. Abstract

Syntax Trees representation of the analyzed system is parsed in order to obtain the

structures for subcomponents detection.

ePAD

Another Eclipse plug-in for the design pattern discovering is suggested by [36].

Contrary to the previous tools, this solution uses both static and dynamic analysis. As

author noted, “The tool is able to recover design pattern instances through a structural

analysis performed on a data model extracted from source code, and a behavioral

analysis performed through the instrumentation and the monitoring of the software

system”.

DeMIMA

Authors of DeMIMA, [37], present a multilayered approach for design pattern

detection. The tool consists of three layers: two layers to recover an abstract model of

the source code, and a third layer to identify design patterns in the abstract model. So

it is an approach covering static code analysis.

The tool is implemented on the top of PTIDEJ framework.

MoDeC

Another study from the members of PTIDEJ research team presents also the dynamic

analysis approach to detect the behavioral and creational patterns [38]. Firstly, the

static analysis tool is used to detect design pattern, then the dynamic analysis is

executed to find behavioral and creational motifs in the code.

7 Advanced Design Patterns Automation Tools

An intelligent CASE tool that takes benefit of design patterns to provide a direct help

to the engineer in the design of a complex software system, described in [39], can be

placed among the advanced design patterns automation. This chapter points out the

main principles of this tool and provides also description of the second expert system

that helps to the novice developers in design pattern applying during the

implementation process.

Bergenti [39] also specified the requirements to the expert system which purpose

is to criticize the design patterns application:

1. The system should find automatically pattern realizations to assign a role to

the design elements.

2. The system should propose pattern-specific critiques directed to improve the

design.

3. The system should suggest alternative realizations of the patterns

emphasizing the achievable improvements.

4. The system should propose a design pattern to solve a particular design

problem.

5. The system should find recurrent design solutions that can be the base for

new design patterns.

6. The system can enhance these processes with learning capabilities.

7.1 IDEA: Interactive Design Assistant

Bergenti [39] proposed the tool IDEA that is a design assistant intended to support the

engineer in the design process. IDEA is based on automatic design pattern detection

and fulfills the first two cases from the design pattern expert system requirements.

IDEA tool supports design phase of the development process. It analyses model

created and provides critiques related to the design patterns application during the

user’s work with the UML model of a system.

IDEA Expert System Structure

IDEA tool is composed from the following three modules:

 The input module purpose is to retrieve the UML model from CASE tool,

extract class and collaboration diagram from it and transform these diagram

into the standard representation that can be processed by the reasoning engine.

 The reasoning engine analyses the system’s model retrieved by the input

module and for this purpose contains a knowledge base. The loaded system’s

model is represented as a set of Prolog facts and creates model-dependent part

of the knowledge base. The second part of the knowledge base is called model-

independent and contains set of patterns that can be detected and design rules

with associated critiques. This part of the knowledge base is represented by

Prolog clauses.

 User interface is a part of the IDEA that is directly exposed to the user; it is

a CASE tool for UML modeling. User interface is not implemented by IDEA,

two common CASE tools, Rational Rose or ArgoUML, are integrated with

IDEA, so the user can choose the CASE tool according to his preferences.

The input module and the reasoning engine are implemented in Java to support

its integration with different CASE tools running on different platforms.

IDEA Expert System Principles

Logic of the patterns detection, reasoning and critiques providing is based on the

Prolog, which is one of the first declarative and logic programming languages often

used in the expert system implementations.

Knowledge base contains list of detectable pattern described by structure

template and collaboration template. As Bergenti [39] explains, the structure template

identifies pattern-specific constraints and the collaboration template is used to refine

the detection performed by means of the structure template. Then the base contains

also set of design rules with the corresponding critiques.

After the UML model is transformed into the Prolog representation, the rules are

evaluated and if the related clause is satisfied, IDEA assistant triggers relevant

critiques to be displayed to user.

IDEA tool displays to the user two lists, the pattern list with all design patterns

detected and the to-do list with the design relevant critiques ordered by their

importance. The critiques provide a user with following suggestions:

 Improve the names of classes, attributes and operations.

 Consider changing the access modifier for classes, attributes and operations.

 Operations are likely to be missing in a class.

 Operations are likely to be dangerous for reusability.

 Another design pattern can be used to solve design problems.

7.2 Pattern Advisor

Berdún [40] introduces an expert system enhanced with machine learning techniques

that can assist novice software designers during the software implementation process.

The expert system is called Pattern Advisor and its user interface looks like

common UML modeling CASE tool, similarly to IDEA. The CASE tool is enriched

by active assistance agent for design pattern usage.

The system expects two types of users, novice developers and expert developers.

The knowledge base does not include only design patterns catalog, but it stores also

knowledge gained by observing an expert developer during his work with the CASE

tool. The tool is then able to assist novice developer to apply design patterns like

a real specialist. The biggest advantage of Pattern Advisor beside IDEA is that this

tool implements machine learning techniques and is able to learn from an expert

designer.

Pattern Advisor Knowledge Base Training Principles

More specifically, the knowledge base of Pattern Advisor is formed from the

following sources:

1. Pattern catalog as it is defined by [1]. Structure patterns representation is

determined by class diagram, and behavioral and creational patterns

representation is based on the sequence diagram.

2. Learning about pattern applying by observing expert developer interactions

with CASE tool, this kind of knowledge can be called background

knowledge, or heuristically gained knowledge.

To capture and update expert knowledge of design patterns applying, Pattern

Advisor uses Bayesian Network approach which combines principles from several

research areas, e.g. statistics, probabilistic theory, graph theory and computer science.

Berdún [40] explains that Bayesian Network is a probabilistic graphical model of

uncertain knowledge in which knowledge is modeled by a directed, acyclic graph

where nodes denote random variables and arrows denote dependencies among these

variables. This graph then enables to compute the probabilities of specific output

variables, in our case design pattern representations, based on the occurrence of other

variables assumed as input.

Initially, the Pattern Advisor knowledge base contains only data derived from

pattern catalog and just minimum of background knowledge. Bayesian Network is

then formed mainly from the knowledge gained from pattern catalog. As the agent

monitors the expert user’s action in the CASE tools, the probabilities stored in the

Bayesian Network get updated with the newly gained information.

Pattern Advisor gains the expert knowledge in following ways:

1. Monitoring of expert developer’s behavior during application of a new

pattern into the solution while he is not aware of it.

2. Feedback provided by the developer. Advisor allows the developer express

his satisfaction with patterns advised and agent updates the Bayesian

Network according to it.

Pattern Advisor Expert System Principles

When the Bayesian Network gets well trained, the novice developer can start using

Pattern Advisor as an expert system. Agent monitors the novice user’s actions within

UML diagram and uses its Bayesian representation and computation in order to infer

a list with recommended design patterns.

Dialog with advised design patterns and their description can be shown to the

user in following cases:

1. Agent initializes conversation. Advice window is triggered by agent when it

detects the possible pattern application.

2. User can initialize the conversation with Pattern Advisor by pressing an

intended button.

The technological principles used for the Pattern Advisor implementation are

similar to Bergenti’s system; the core implementation technologies are Java and

Prolog. The framework Javalog [41], which enables integration of Java and Prolog for

agent-oriented programming, has been used. For the Bayesian Network

implementation, the framework JavaBayes [42] has been selected which enables

creation and manipulation of Bayesian networks.

8 Conclusions

The article presented the current possibilities and research activities in the area of

design patterns automation and how it is supported in CASE tools dedicated for Java

developers.

Although the research area examines the development of expert systems which

purpose is to advise to inexperienced developers design patterns applying into the

software solution, in the praxis the developer still need to have basic knowledge about

each design pattern intent and can derive benefits rather from several IDE’s feature

that save the implementation time.

In the reverse engineering area and for the automatic system documentation, the

various code analysis tools focused on automatic design pattern detection can be

applied to inspect the system’s architecture.

9 Acknowledgement

This work was supported by the project No. CZ.1.07/2.2.00/28.0327 Innovation and

support of doctoral study program (INDOP), financed from EU and Czech Republic

funds.

References

1. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Pattern - Elements of Reusable

Object-Oriented Software. 1994

2. Freeman, E., Freeman, E., Bates, B., Sierra, K., Robson, E.: Head First Design Patterns.

2004

3. Dascalu, S., Hao, N., Debnath, N.: Design Patterns Automation with Template Library.

2005

4. Bulka, A.: Design Pattern Automation. 2002

5. Kirasic, D., Basch, D. Ontology-Based Design Pattern Recognition. 2008

6. Martinez, L., Favre, M., Pereira, C.: Integrating Design Patterns into Forward Engineering

Processes. 2004

7. Lande, R., Sobin, S.: Reverse Engineering of Computer Software and U.S Antritrust Law.

1996

8. ModelMaker, http://www.modelmakertools.com

9. UMLStudio, http://www.pragsoft.com/prod_umls.html

10. Together, http://www.borland.com/_images/DS-Together_tcm32-206857.pdf

11. Rational Rose Products, http://www-03.ibm.com/software/products/us/en/ratirosefami

12. Rational Software Copyright: Pattern-Oriented Development with Rational Rose. 2001

13. Jakubik, J.: Comparison of CASE tools based on design patterns source code support.

2006. http://www2.fiit.stuba.sk/iit-src/2006/03jakubik.pps [Accessed 02/04/2013]

14. Enterprise Architect, http://www.sparxsystems.com/products/ea/index.html

15. Eclipse, http://www.eclipse.org/platform/overview.php

16. Shinkarenko, I.: Design Patterns Used in Eclipse. Bangalore, Eclipse Summit India 2009

17. PatternBox, http://www.patternbox.com/eclipse-plugin.html

18. Vandyke, C.: A Design Pattern Generation Tool. 2009

http://www.modelmakertools.com/
http://www.pragsoft.com/prod_umls.html
http://www.borland.com/_images/DS-Together_tcm32-206857.pdf
http://www-03.ibm.com/software/products/us/en/ratirosefami/
http://www2.fiit.stuba.sk/iit-src/2006/03jakubik.pps
http://www.sparxsystems.com/products/ea/index.html
http://www.eclipse.org/platform/overview.php
http://www.patternbox.com/eclipse-plugin.html

19. Design Pattern Toolkit,

https://www.ibm.com/developerworks/community/blogs/woolf/entry/the_design_patterns_

toolkit

20. Java Pattern Wizard, https://developers.google.com/java-dev-

tools/codepro/doc/features/patterns/pattern_wizard

21. NetBeans, https://netbeans.org/

22. AndyPatterns Copyright: UML and Design Pattern Support in Netbeans 6.5. 2013.

http://www.andypatterns.com/index.php/blog/uml_and_design_pattern_support_in_netbea

ns_6_5/ [Accessed 25/04/2013]

23. DPAToolkit, http://dpatoolkit.sourceforge.net/

24. Jakubik, J.: Extension for Design Pattern Identification Using Similarity Scoring

Algorithm. 2009

25. Sindelar, S., Zavoral, F.: Design Patterns Support in Development Environments. 2011

26. Ferenc, R., Gustafssony, J., Muller, L., Paakki, J.: Recognizing Design Patterns in C++

Programs with the Integration of Columbus and Maisa. 2002

27. Blewitt, A., Bundy A, Stark, I.: Automatic Verification of Java Design Patterns. 2005

28. Shi, N., Olsson, R.: Reverse Engineering of Design Patterns from Java Source Code. 2006

29. Guéhéneuc, Y. et al.: Ptidej: A Tool Suite. 2005

30. Fujaba Tool Suite, http://www.fujaba.de

31. Niere, J. et al.: Towards pattern-based design recovery. 2002

32. Dong, J., Lad, D. S., Zhao, Y.: DP-Miner: Design Pattern Discovery Using Matrix. 2007

33. Reinersdorff, A.: On Recognizing Design Patterns with Crocopat. 2009

34. Birkner, M.: Objected-oriented design pattern detection using static and dynamic analysis

in java software. 2007

35. Tosi, C., Zanoni, M., Maggioni, S.: A Design Pattern Detection Plugin for Eclipse. 2009

36. De Lucia, A.: An Eclipse Plug-in for the Identification of Design Pattern Variants. 2011

37. Guéhéneuc, Y., Antoniol, G.: DeMIMA: A Multilayered Approach for Design Pattern

Identification. 2008

38. Ng, J. K., Guéhéneuc, Y., Antoniol, G.: Identification of Behavioral and Creational Design

Motifs through Dynamic Analysis. 2009

39. Bergenti, F., Poggi, A.: IDEA: A Design Assistant Based on Automatic Design Pattern

Detection. 2000

40. Berdún L., et al.: Assisting novice software designers by an expert designer agent. 2008

41. Amandi, A., Campo, M., Zunino, A.: JavaLog: A framework based integration of Java and

Prolog for agent-oriented programming. 2004

42. JavaBayes, http://www.cs.ubc.ca/~murphyk/Bayes/bnintro.html

https://www.ibm.com/developerworks/community/blogs/woolf/entry/the_design_patterns_toolkit
https://www.ibm.com/developerworks/community/blogs/woolf/entry/the_design_patterns_toolkit
https://developers.google.com/java-dev-tools/codepro/doc/features/patterns/pattern_wizard
https://developers.google.com/java-dev-tools/codepro/doc/features/patterns/pattern_wizard
https://netbeans.org/
http://www.andypatterns.com/index.php/blog/uml_and_design_pattern_support_in_netbeans_6_5/
http://www.andypatterns.com/index.php/blog/uml_and_design_pattern_support_in_netbeans_6_5/
http://dpatoolkit.sourceforge.net/
http://www.fujaba.de/
http://www.cs.ubc.ca/~murphyk/Bayes/bnintro.html

Failures of Outsourcing of Software Development

Aziz Ahmad Rais, Rudolf Pecinovsky

University of Economics, Prague, Faculty of Informatics and Statistics,

Department of Information Technologies

W. Churchill Sq. 4, 130 67 Prague 3
arais@seznam.cz, rudolf@pecinovsky.cz

Abstract. An outsourcing of software development has higher risks of failure

than an internal software development. Both the internal and the outsourcing

types of development have some common failure types. However, the root

cause of the failures, the risks and the solutions of the risks and preventing from

the failures are not the same for both types of software development. The goal

of this paper is to analyze the outsourcing of software development failure’s

causes and risks.

1 Introduction

The generally known problems of software developments are lack of business re-

quirements, lack of technical requirements, lock of resources and poor testing 1. There

are the software development project’s level problems that cause also a project failure

for example: a wrong cost estimate, a wrong project scheduling, the technologically

unrealistic requirements and a wrong effort estimate 2. The probabilities of these risks

are getting higher when a software development is outsourced. Some of the reasons

why the outsourcing software development risks are higher than the internal software

development are mentioned in article 3.

Also, in the outsourcing of software development we can identify risks on two lev-

els (development and project). The project level risks are already analyzed and there

are some recommendations and some processes defined 4.

This paper is mainly about to identify the risks and the problems of software devel-

opment in outsourcing. The result of analysis of researches in different papers and

articles in the following chapter doesn’t differentiate between the problems of a soft-

ware development outsourcing and a software service outsourcing. However software

development outsourcing is a core part of a global outsourcing and the result of the

researches will show to some extent the problems of software development that I have

experienced too.

2 Analysis

In order to understand the need for this analysis it is necessary to understand “why

the outsourcing projects fail?” Answering this question requires a very large research

and mainly means to do such a research. Besides that, most of the companies and

CIO’s have done such researches and some results are available on the Internet in the

form of html pages or articles. The subject of this paper is not to do another research

to answer the reason of failure of an outsourcing project but rather to concentrate on

problem analysis; that is why this question will be answered based on publicly availa-

ble results of such researches.

Analysis 5 shows that most fear from outsourcing a project was that quality and ex-

pectation will be on the nearly the same level as an internal project. The result was

that the quality of the outsourced projects was not good. In the research were missing

the detailed description of the quality attributes. The research was based on 500 com-

panies and the quality was risen by a new process, where more human resources to the

project, training were added.

Research does not show the number of increased resources, but if the reason for

outsourcing would be financial advantage in such cases, adding more resources and

training will increase the cost.

The quality of a software development is usually measured on three business levels,

design and source code levels 3. Business level quality means what business processes

are automated and implemented by an application; design level quality means archi-

tecture and non-functional requirements, and finally source code quality is about how

code is self-descriptive and commented.

Mostly the quality of a design and a source code cannot be checked easily and

agreed on the details without proper solution. The source code and the design level

quality can be checked and agreed based low level design patterns 6; the source code

standard to follow, properly documented source code and so on. Usually in outsourc-

ing IT projects a business process is checked by a user acceptance test and all other

steps of quality checks are skipped.

The research 7 shows a long list of risks that cause outsourcing projects failure.

The most important risks for a software development process that would be covered

by this paper are:

• The products are unclear, the requirement changed continually

• Personnel capacity, resources, or lack of responsibility

• Service quality, such as software maintenance and technical support

• Software test plans

All other risks mentioned in that research are related to the preliminary phases of

the outsourcing projects, and cannot be solved within a software development process.

The research 8 is about the general outsourcing risks, there can also be found some

technical risks that are directly related to the software development. As technical risks

are mentioned integration, interoperability and supportability of systems. All these

problems are part of the technical architecture of the software application and they are

called non-functional requirements. Another risk identified in this research is Quality

Assurance. This one of the most important disciplines in software development as

general, and in outsourcing, it is getting even more important as it will be the only way

how to verify the software against requirements. This research proves with statistics

the correlation between some risks e.g. a quality and a schedule. It means that the

quality of the software can be affected with high probability when the project time to

delivery is set up shorter than in the reality required. The schedule can be decided as

part of the delivery date already in SLA part of a contract, which belongs to prelimi-

nary phase of outsourcing of the software development. This research also shows that

statistically all these risks are technical, QA (quality), schedule of project or delivery

deadline are higher than 50%. Even though the research had some limitation in sample

size, if many authors points to similar risks, the results and risk of the research can be

accepted as reliable and applicable with outsourcing of software development.

The following research is done based on software and services outsourced to India.

It covers most actual statistic on failure and success of software and service outsource

to India 9. This paper takes the statistics from Standish Group and points out that the

overall success rate of software projects, which is 32%, partial failure rate is 44% and

complete failure rate is at 24%. These statistics are based on 8,000 software projects.

Main risks of failure are identified management problems (accounted for 65%) and

technical problems (accounted for 35%). Based on Microsoft research spending 5%

cost on risk management can increase the successful finishing of projects from 32% to

50%, or even to 70%. But still, research does not show how many projects will be at

50% success and how many projects at 70% success. So in case of 50% success, we

have still a lot of risk that even risk management cannot solve it. These percentages

are very important to rely on. As the results of this research can be generalized and

make conclusion that outsourcing of software development has technical risks and so

far there is no methodology recommended reducing or fully removing them.

The research describes that 46% of total of global service outsourcing market goes

to India and 65% of the total global software outsourcing market goes to India.

The following research is based on small size projects and the number of projects

analyzed is 785,325 from which 437,278 projects are from 2001 till 2008. 348,047

projects are from 2009 to 2012 10. Analysis was made based on variables whether

client has skills of outsourcing. For example whether client knew the risk of sourcing

or whether the client knew satisfaction score of outsourcing projects. Another variable

was whether provider has skills of outsourcing; for example whether provider knew

risk of sourcing or whether the provider knew satisfaction score of outsourcing pro-

jects. It is shown here that having pervious skills of outsourcing increases the proba-

bility of success because you can predict risks. Because the research was based on

smaller size projects this implies that the smaller the project, the smaller the risks.

It is analyzed here that the role of intermediaries on success and failure of out-

sourced projects 11. Analysis is done based on 700 projects from 1989-2009. Analysis

was done based on an econometric model and calculated with the likelihood of failure

of outsourcing projects. The result of the research is in contrast with expectation, as

the result is that the likelihood of a success of outsourced projects without the use of

intermediaries 71%, and the success of outsourcing projects with the use of intermedi-

aries is 52%. The reason is, for such result mentioned, that the role of intermediaries

makes selection of a vendor more competitive. Further, this paper references other

researches that confirm similar percentages of a failure as all the above mentioned

papers.

3 Analysis based on experience

This chapter will describe details of possible problems that can happen in the soft-

ware development outsourcing process. The problems/issues are as following:

1. Process

2. Technical

3. Quality assurance

The bellow detailed analysis is based on my experience with outsourced software

development. Beneath are provided a summary of outsourced software problems, in

order to understand the three types of problems.

One of my former employers outsourced their e-portal to increase their products

sales via Internet. The software was outsourced to an outsourcing company and the

implementation was based on proprietary framework that was based on EJB 2.1.

Software development’s cost around 1M €. When the product was deployed to pro-

duction, its performance was so poor that it could not even be used in an intranet by a

few users from a Call Center. Unfortunately, I do not have more detail about the

source code, architecture, design and the documentation of this system. My employer

tried another outsourcing company, and product was based on Hibernate, JSF, spring,

Mule. The system was handed over to internal team for further maintenance. The first

problems we had were poor documentation and the knowledge transfer. The quality of

both of these did not meet any specific criteria, hence none of the developers was able

to fix/extend or change anything in the system as was expected by company execu-

tives.

Technology selection was good to use with light-weight components. However, the

problem was that the system had no business logic, no service layer, no common vali-

dation of inputs, and the system was not separating sales and marketing data. Market-

ing data were only for analytical purpose and its volume was five times more than the

sales data. The data model was using an entity attribute value (EAV) model. This

model was causing queering of the database with entity property as there was a miss-

ing column per attribute of entity, so you had to select the whole entity. This was caus-

ing big performance problem when there was any selection done on data. This DB

model caused that the object oriented representative had multiple layer of wrapper

which was decreasing flexibilities, maintainability, and extensibility of the system.

Any new change in the system cost twice more than originally expected. The cost of

IT was at the end more than half of what company income.

Other example of outsourcing is that there was hired whole team of 24 developers,

account manager, and a project manager. Team was remote and the company invested

approximately 500 Thousand US Dollars and no project was given to the team. So

outsourcing was only a cost and no project. But the team did some internal projects

for learning purposes; however the implementation lasted three times longer than the

internal team did in any similar project. The problem might be the outsourcing model,

than the software development, but the team supposed to deliver software. This is a

good example of a process, there was no process agreed upon.

The last example of outsourcing software is that outsourcing company (vendor) de-

velopment team was twice bigger than the internal team that took over the software.

This software had yet again similar technical problems; in the source code there were

a lot of experimental codes, source code was not commented, the application had

memory leak, and the performance, these problems were because by poor architecture.

The documentation was describing some business functionality that was vague and it

was in contrast with implementation, mostly difficult to judge whether a problem is

bug or enhancement.

Other problems, like very poor security, extensibility, maintainability, were caused

by a wrong design and the component model of the whole architecture. Also, the sys-

tem did not have clearly separated layers.

4 Conclusion

Based on the above searches, the results can derive that it is very difficult to ana-

lyze all variables and identify all risk factors of outsourcing and make conclusion and

decide which factors exactly are the most critical root cause of a failure. Different

authors were interested in different risks of outsourcing and identified different risks

of failures of outsourcing projects. Even though outsourcing of software development

is important part of all of the outsourcing projects, none of the above made it clear

whether there are any differences between software development outsourcing and

software service outsourcing.

Some authors were analyzing inter risk dependencies and therefore can be made

other conclusion that not only external events, management and process mistakes can

lead to failure of outsourcing project, but also if some issue in the planning of out-

sourcing project is underestimated can create other types of risk factors for outsourc-

ing projects.

A paper [11] from 2001 analysis issues of outsourcing software development. It

means that software development outsourcing history is similarly long like all other

outsourcing projects and that is why the failure factors and risk factors identified can

be applied on software development outsourcing.

Most of the risk mentioned or identified so far by researches can be categorized in-

to risks that are connected to the initial phase or pre-project phases of outsourcing of

software development project. The risks important for this paper are risks of a tech-

nical type, which can be divided into risk of an architecture, design, implementation

and quality assurance.

All the researches so far did not provide a solution to the technical problems of

software development outsourcing. The solutions, like investment in risk management,

training, adding additional resourcing to outsourcing projects or multi-sourcing and so

on, are good for management of outsourcing project at a high level. However, solving

technical problems is not fully possible with risk management ad adding resource.

That is why there are still many software development outsourcing projects that fail.

Risk of outsourcing can be divided in many ways, but in this page they will be lay-

ered into different phases of outsourcing a project. Every project has multiple phases

and phases of software development as it is known from different development meth-

odologies: pre-project activities, analysis, design, implementation, testing and de-

ployment, and knowledge transfer. The pre-project activities can be whole outsourcing

process, define outsourcing objectives, sending RFI to identify vendor, Signing con-

tract with vendor, SLA and so on. A complete process of outsourcing is defined by

many authors; the difference between each defined process is mainly in details. See

example for process definition and details [2].

It is important to summarize all the problems that are important for further detailed

analysis. There can be three types of problems identified in the outsourcing of soft-

ware development: the technical, process and quality assurance problems that can

happen in the following phase of outsourcing software development: business analy-

sis, design, implementation, testing, and knowledge transfer.

5 References

1. G. Rajkumar, Dr.K.Alagarsamy: THE MOST COMMON FACTORS FOR THE

AILURE OF SOFTWARE DEVELOPMENT PROJECT, Volume 1, No. 11, January

2013 ISSN – 2278-1080, The International Journal of Computer Science & Applica-

tions (TIJCSA)

2. Kurt R. Linberg: Software developer perceptions about software project failure: a

case study, The Journal of Systems and Software 49 (1999) 177-192

3. RAIS A. A., PECINOVSKÝ R.: Agile outsourcing of Software development. Objek-

ty 2010, Ostrava. ISBN 978 80 7368 890 8.

4. VOŘÍŠEK Jiří, BRUCKNER Tomáš: Outsourcing IS/IT z hlediska zadavatelského

podniku. červen 1998

5. Atish Banerjee: Success and Failure of Firms in the IT Outsourcing Industry, June

2005 Massachusetts Institute of Technology.

6. FREEMAN Eric, ROBSON Elisabeth, BATES Bert, SIERRA Kathy: Head First De-

sign Patterns. O'Reilly Media October 2004

7. Jiangping Wan, Dan Wan, Hui Zhang: Case Study on Business Risk Management for

Software Outsourcing Service Provider with ISM: Technology and Investment, 2010,

1, 257-266 doi:10.4236/ti.2010.14033 Published Online November 2010

(http://www.SciRP.org/journal/ti)

8. Shereazad Jimmy Gandhi: AN ANALYTICAL CHARACTERIZATION OF

OUTSOURCING RISKS, 2010, STEVENS INSTITUTE OF TECHNOLOGY.

9. DONG Meixia, GE Jiping: Experience and Inspiration of Risk Management of In-

dia’s Software and service Outsourcing, 2012, Management Science and Engineering

Vol. 6, No. 3, 2012, pp. 34-38 DOI:10.3968/j.mse.1913035X20120603.Z0660

10. Magne Jørgensen: Failure Factors of Software Projects at a Global Outsourcing Mar-

ketplace, Simula Research Laboratory and University of Oslo. P.O.Box 134, NO-

1325 LYSAKER, Norway.

11. Ravi Bapna, Alok Gupta, Gautam Ray, Shweta Singh: Analyzing IT Outsourcing

Contract Outcomes: The Role of Intermediaries, 2010, Carlson School of Manage-

ment, University of Minnesota.

Software Process Improvement in small companies

Alena Buchalcevová
1

1 Department of Information Technologies, Prague University of Economics,

W. Churchill sqr. 4, 13067 Prague 3
buchalc@vse.cz

Abstract. This paper focuses on Software Process Improvement which can bring

business benefits to small companies. Firstly, a current status of software processes in

the Czech Republic is stated. Then, the ISO/IEC 29110 standard “Lifecycle profiles

for Very Small Entities” is presented as an example of Software Process Improvement

initiatives focused on small companies. Lastly, this paper presents the initiatives

undertaken by the author towards a diffusion of this standard in the Czech Republic

and also their results.

Keywords: Software Process Improvement, standard, small companies

1 Introduction

Today’s economic climate forces companies to focus on those projects with an

immediate value to the business. IT projects under this pressure have to be made right

the first time, on time, and match to customer requirements. According to several

surveys [15], [3] the ratio of successful software projects ranges to 60% while the rest

is categorized as challenged or failed.

Software Process Improvement (SPI) is a way of improving a status of software

development. International standards like ISO/IEC 12207 [2], ISO/IEC 15289 [3],

ISO/IEC 15504 [4], and ISO 9001 [5] play an important role in SPI initiatives as

companies are willing to show compliance with common business rules. However, it

was identified that small companies find it difficult to implement international

standards as they do not have enough resources, in terms of number of employees,

budget and time [6], [7]. To solve these difficulties, the ISO/IEC 29110 standard

―Lifecycle profiles for Very Small Entities‖ is being developed.

In this paper a current status of software processes in the Czech Republic is stated.

Then, the ISO/IEC 29110 standard ―Lifecycle profiles for Very Small Entities‖ is

presented as an example of Software Process Improvement initiatives focused on

small companies. Lastly, the initiatives towards a diffusion of this standard in the

Czech Republic and their results are presented.

2 Current Status of Software Processes in the Czech Republic

There are only few surveys focused on using software development methodologies,

standards and tools in the Czech Republic. Survey conducted in 2006 and described in

[4] showed the use of agile methodologies and approaches in the Czech Republic was

only at the starting line. To find out the current status of software processes in small

software companies in the Czech Republic and the support by software tools we

conducted a questionnaire survey at the conference WebExpo 2011.

2.1 Research Model and Method

The research objective was to determine to which extent company processes are

supported by software systems in software companies, which problems software

companies have to address and whether they perceive that a suitable software system

would help to improve their software processes. The research was focused on small

companies that are prevailing in the field of software development. We define small

companies as those with fewer than 25 employees according to definition of the

working group WG24 within the ISO / IEC JTC 1 SC7. [17] To perform the research,

a questionnaire survey method was used. The questionnaire consisted of three main

parts:

• Segmentation questions,

• A section focused on software development methodologies and practices,

• Questions concerning the support of company processes by software systems.

We conducted the questionnaire survey at the conference WebExpo 2011 which took

place from the 22nd till the 24th of September, 2011 in Prague and was held by the

University of Economics. Overall, 1100 participants signed up mainly from small and

medium-sized companies that are engaged in software development primarily within

the internet environment. This conference is traditionally the most important

professional event of the year for many web developers not only from the Czech

Republic.

Table 1 Company size

Company size Absolute frequency Relative frequency

freelancer 14 13%

2 – 5 employees 18 17%

6 – 10 employees 16 15%

11 – 25 employees 16 15%

26 – 50 employees 7 7%

51 – 250 employees 25 24%

more than 250 employees 9 9%

Total 105 100%

Conference participants received the questionnaire in a paper form at registration as

well as electronically in e-mail newsletters. 108 participants responded to our

questionnaire survey. Thus, the response rate was 9.8%. 105 of 108 respondents are

involved in software development, i.e. 97%. Regarding the company size of our

respondents, all 105 respondents replied to this question. Table 1 summarizes the

frequencies for each category. Based on the results, we identified the segment of

small companies, which includes 64 respondents.

2.2 Selected Research Results

One part of the questionnaire survey was focused on whether and how are

methodologies and practices of software development used in companies. The best

known and most widely used methodologies were chosen (see Table 2)

Table 2 Answers on the question: Do you use in your company any of following software

development methodologies?

Software development

methodology

Small companies (60)

∑ We use it We use it

very often

We use it

occasionally

We don’t

use it

Abs. Rel. Abs. Rel. Abs. Rel. Abs. Rel.

Scrum 26 43% 12 20% 14 23% 34 57%

Extreme Programming 19 32% 2 3% 17 28% 41 68%

Rational Unified Process 3 5% 1 2% 2 3% 57 95%

Open Unified Process 1 2% 1 2% 0 0% 59 98%

Feature Driven Development 9 15% 4 7% 5 8% 51 85%

Microsoft Solutions Framework 4 7% 2 3% 2 3% 56 93%

Lean Software Development 3 5% 0 0% 3 5% 57 95%

Kanban 4 7% 1 2% 3 5% 56 93%

In the segment of small companies, the methodologies that are used more frequently

include Scrum, Extreme Programming, and Feature Driven Development. The most

popular is Scrum, which is used very often in one fifth of respondents. But the rate of

use of methodologies is overall lower than in the group of all companies. At least one

methodology is used by 40 respondents, i.e. 66%. Remaining one third does not use

any methodology even occasionally. Very often is at least one of the methodologies

used by only 18 respondents, i.e. 30%.

Another question was focused on software development practices usage. Results of

the survey showed that modern software development practices are more widely used

in comparison with the methodologies. Similar results came from the surveys of Scott

Ambler [Ambler, 2009].

8. Je Vaše firma certifikována na některou z norem či standardů?

ISO 9001 Systémy managementu jakosti

ISO/IEC 15504 Posuzování procesů

CMMI

jiné:

The vast majority of respondents think that software processes in their company can

be improved by using suitable software development methodologies, practices and

software systems, as seen in Figure 6. The results were quite identi-cal with the

segment of small companies.

Fig. 1 Answer for the question: Do you think that it is possible to improve the

processes of software development at your company by using appropriate software

development methodologies, practices, tools or information systems?

3 Software life cycle processes for very small entities

Worldwide conducted surveys [1], [16] indicated that even though very small

companies developing software have a significant influence on the economy, most of

them do not implement any international standards and models like ISO/IEC12207 [2]

or CMMI. Subsequently, these companies have no, or very limited opportunities to

be recognized as entities that produce quality software and therefore are often cut off

from contracts.

The ISO/IEC 29110 standard ―Lifecycle profiles for Very Small Entities‖ aims at

addressing these issues. The term ―very small entity‖ (VSE) was defined by the

ISO/IEC JTC1/SC7 Working Group 24 and consequently adopted for use in the

emerging ISO/IEC 29110 software process lifecycle standard [15], as being ―an entity

(enterprise, organization, department or project) having up to 25 people‖. The 29110

standard consists of five parts as shown in Figure 3 [15]

Part 1 Overview [15] explains main concepts, terms and structure of the standard. Part

2 Framework and Taxonomy [16] presents principles and mechanism of building VSE

Profiles. VSE Profile is a subset of the base standard for VSE that is necessary to

accomplish a particular function.. Part 3 Assessment Guide [17] defines the process

assess-ment guidelines and compliance requirements needed to meet the purpose of

the defined VSE Profiles. This part of the standard is used by certified assessors for

VSE assessment. Part 4 Specifications of VSE Profiles [18] provides the mapping to

the source standards and is useful for method developers and assessors. Part 5

Management and Engineering Guide [19] is intended for VSEs. The set of 29110

standards was published in 2010. Part 1, 3 and 5, are available at no cost from ISO.

ISO/IEC 29110 is based on existing standards like ISO/IEC 12207 [2], ISO/IEC

15289 [3], ISO/IEC 15504 [4], and ISO 9001 [5].

29110 Guides (TR)

Assessment Guide (TR 29110-3)

Management and Engineering Guide (TR 29110-5)

Management and

Engineering Guide

VSE Profile m-n
(TR 29110-5-m-n)

Management and

Engineering Guide

VSE Profile m-n
(TR 29110-5-m-n)

29110 Profiles (IS)

Framework and Taxonomy (IS 29110-2)

Specifications of VSE Profiles (IS 29110-4)

Specification - VSE Profile Group m
(IS 29110-4-m)

Specification - VSE Profile Group m
(IS 29110-4-m)

29110 Overview (TR 29110-1)

Fig. 2. ISO/IEC 29110 Set of Documents [15]

A key concept of the ISO/IEC 29110 standard lies in development of various VSE

Profiles. As a starting point the ―Generic‖ profile group was defined, which is

applicable to a vast majority of VSEs that do not develop critical software. Within the

Generic profile group four profiles were proposed, i.e. Entry, Basic, Intermediate,

Advanced. By using these profiles very small companies have the chance to improve

their processes in a clear and stepwise manner. First the Basic Profile intended for a

single project with no special risks or situational factors was developed and published.

Implementation of the Basic Profile enables VSE to establish good practices for

project effectiveness and efficiency, project planning, monitoring, control and

configuration management. Besides the project management process also the software

engineering process is defined, which encompasses practices for requirements

management, analysis, design, construction, verification, validation, and testing.

As some pilot projects of Basic Profile implementation in VSEs showed this profile is

still difficult to implement for some companies. That is why the Entry Profile was

developed. It applies to six person-months effort or start-up VSEs. Entry and Basic

Profiles are published and can be used. Other two profiles are still under development.

The Intermediate Profile is intended for VSE, which has more than one project at a

time, and therefore is aware of assigning project resources and monitor projects for

achieving business objectives and customer satisfaction. Furthermore, VSE at this

level needs to define, deploy and improve the organizational standard processes to

achieve similar results in all projects. Therefore, the Intermediate Profile adds to the

Basic Profile following processes: Project Portfolio Management, Resource

Management and Process Management. In addition, the Advanced Profile is going to

supply business management practices.

To help VSE with implementation of the Entry and Basic Profiles, series of

deployment packages were developed and offered for free [21]. A Deployment

package acts as a detailed methodology that guides company through the process of

profile implementation. Typical Deployment package includes process descriptions,

activities, tasks, roles and products, templates, checklists, examples, reference and

mapping to standards and models, and a list of supporting tools. In order to accelerate

the adoption of the ISO/IEC 29110 standard a set of university courses for

undergraduate and graduate students was created. [22].

4 The initiatives towards a diffusion of ISO/IEC 29110 standard

in the Czech Republic

As results of our survey proved small companies think that by using right

methodologies, standards and tools it is possible to improve their software processes.

Quality orientated process approaches and standards are maturing and gaining

acceptance in many companies worldwide. Use of international standards in

companies in the Czech Republic is a key factor for their competitiveness in the

global market. Standards emphasize communication and shared understanding. This

kind of understanding is not only important in a global development environment;

even a small group working in the same office might have difficulties in

communication and understanding of shared issues. Standards can help in these and

other areas to make the business more profitable because less time is spent on non-

productive work. The use of standards has many potential benefits for any

organization:

 Improved management of software,

 Schedules and budgets are more likely to be met,

 Quality goals are likely to be reached,

 Employee training and turnover can be managed,

 Visible certification can attract new customers or be required by existing

ones,

 Partnerships and co-development, particularly in a global environment, are

enhanced.

Seeing the broad adoption of standards in countries in Asia and Latin America

companies in the Czech Republic have to move forward in this area. Unfortunately,

they are not sufficiently supported by governmental institutions to the effect that

standards would be required. However, companies themselves should care about

quality of their processes and products. To support the adoption of the ISO/IEC 29110

standard in the Czech Republic I conducted several activities. First, I incorporated this

standard into the university courses on the undergraduate and graduate level. With the

help of students of the graduate course Software process improvement we prepared

local version of the standard and all deployment packages and published them on the

website http://spicenter.vse.cz/. We also translated the wikipedia page about this

standard into Czech language http://cs.wikipedia.org/wiki/ISO_29110. The Faculty of

Informatics and Statistics of the Prague University of Economics is in the process of

building the Center for very small entities in the Czech Republic as a part of the

netcenter for VSE – the global net of centers for very small entities. I have also

prepared public course about this standard.

5 Conclusions

In this paper selected results of the survey focused on support for software processes

in small software companies in the Czech Republic were presented.

As results of the survey showed small companies want to improve their software

processes. International standards could be a tool to fulfil this goal and to help with

their competitiveness in the global market. The ISO/IEC 29110 standard ―Lifecycle

profiles for Very Small Entities‖ was presented as an example of Software Process

Improvement initiatives focused directly on small companies. Lastly, this paper

presented the initiatives undertaken towards a diffusion of this standard in the Czech

Republic.

Acknowledgment

The work reported in this paper was supported by the project IG406013 Software

process improvement and software quality assurance supporting company

competition.

References

1. Anacleto, A.; von Wangenheim, C.G.; Salviano, C.F.; Savi R.; Experiences gained

from ap-plying ISO/IEC 15504 to small software companies in Brazil, 4th

International SPICE Con-ference on Process Assessment and

Improvement,Lisbon, Portugal, April 2004.

2. Ambler, S.W. Agile Practices Survey Results: July 2009. Ambysoft [online].

Available at: http://www.ambysoft.com/surveys/practices2009.html

3. Ambler, S.W. 2011 IT Project Success Rates Survey Results. Ambysoft [online].

Available at: http://www.ambysoft.com/surveys/success2011.html

4. Buchalcevova, A. Research of the Use of Agile Methodologies in the Czech

Republic. In: Barry, C; Conboy, K; Lang, M; et al.(eds) Information Systems

Development: Challenges In Practice, Theory And Education. 2009 (51-64)

DOI: 10.1007/978-0-387-68772-8_5

5. Deployment Packages repository available from

http://profs.logti.etsmtl.ca/claporte/English/VSE/index.html

http://spicenter.vse.cz/
http://cs.wikipedia.org/wiki/ISO_29110

6. ISO/IEC 12207: Systems and software engineering – Software life cycle

processes, 2008.

7. ISO/IEC 15289: Systems and Software Engineering — Content of systems and

software life cycle process information products (Documentation), 2006.

8. ISO/IEC 15504: Information technology – Process Assesment, 2004.

9. ISO 9001: Quality management systems — Requirements, 2008

10. ISO/IEC 29110-1, ―Software Engineering – Lifecycle Profiles for Very Small

Entities (VSE) -- Part 1: VSE profiles Overview‖. Geneva: International

Organization for Standardization (ISO), 2010.

11. ISO/IEC 29110-2, ―Software Engineering – Lifecycle Profiles for Very Small

Entities (VSE) -- Part 2: Framework and Taxonomy‖. Geneva: International

Organization for Standardization (ISO), 2010.

12. ISO/IEC 29110-3, ―Software Engineering – Lifecycle Profiles for Very Small

Entities (VSE) -- Part 3: Assessment Guide‖. Geneva: International Organization

for Standardization (ISO), 2010.

13. ISO/IEC 29110-4, ―Software Engineering – Lifecycle Profiles for Very Small

Entities (VSE) -- Part 4: Specifications of VSE Profiles‖. Geneva: International

Organization for Standardization (ISO), 2010.

14. ISO/IEC 29110-5, ―Software Engineering – Lifecycle Profiles for Very Small

Entities (VSE) -- Part 5: Management and Engineering Guide‖. Geneva:

International Organization for Standardization (ISO), 2010.

15. Johnson, J. My Life is Failure. The Standish Group International, Inc. 2006.

ISBN 1-4243-0841-0.

16. Laporte, C.Y.; April, A. and Renault, A.; Applying ISO/IEC Software

Engineering Standards in Small Settings: Historical Perspectives and Initial

Achievements, Proceedings of SPICE Conference, Luxembourg, 2006

17. Laporte, C. (2007) Applying International Software Engineering Standards in

Very Small Enterprises. CrossTalk – The Journal of Defense Software

Engineering Feb 2007, 29-30

18. O’Connor, R.V., Laporte, C.Y., Towards the Provision of Assistance for Very

Small Entities in Deploying Software Lifecycle Standards, 11th International

Conference on Product Fo-cused Software Development and Process

Improvement (Profes2010), Hosted by LERO, Ireland, June 21-23, 2010.

19. VSE Education Special Interest Group

http://profs.logti.etsmtl.ca/claporte/English/VSE/VSEEducation

http://profs.logti.etsmtl.ca/claporte/English/VSE/VSEEducation

Petri Nets versus UML State Machines

Hana Kubátová1, Karel Richta2, Tomáš Richta3

1 Dept. of Digital Design, Faculty of Information Technology, Czech Technical University in Prague
Thákurova 9, 160 00 Praha 6, Czech Republic

hana.kubatova@fit.cvut.cz
2 Dept. of Software Engineering, Faculty of Mathematics and Physics, Charles University in Prague

Malostranské nám.25, Praha 1, 118 00, Czech Republic
karel.richta@mff.cuni.cz

3 Dept. of Intelligent Systems, Faculty of Information Technology, University of Technology in Brno
Božetěchova 2, 612 66 Brno, Czech Republic

irichta@fit.vutbr.cz

Abstract. Petri nets are widely used for the specification of problems, in particular for describing concurrent systems.
On the other hand, new versions of the UML specification precisely define the semantics of activity diagrams, and state
machines, which can also be used to describe parallel systems. An interesting question is whether we can replace any Pe-
tri net machine by the state machine describing the same behavior, and vice versa.

Keywords. Petri Net, UML, State Machine

1 Introduction

Petri nets are widely used for the specification of problems, mostly in parallel systems. New versions of the UML specifi-
cation language define precise semantics of activity diagrams and state machines. An interesting question is whether we
can substitute arbitrary Petri net by a state machine, with an equivalent behavior, and also opposite. We have to distinguish
between a state machine and an activity diagram. Activity diagrams are essentially similar to flowcharts. The distinction
between state machines and flowcharts is especially important because these two concepts represent two diametrically
opposed programming paradigms: the event-driven programming (state diagrams) and the structured programming (activi-
ty diagrams or flowcharts). In this paper we will try to describe all these concepts formally, and we also try to formulate
transformations between these formalisms.

In our case we are in a situation where we want to describe a network of communicating agents using Petri nets. E.g. we
want to define a smart home solution, which consists of a set of agents monitoring and controlling various elements, such
as heating, cooling, etc. We are able to describe behavior of these agents by Petri nets, and we have a tool that can simulate
designed system. On the other hand, there exist available tools that can convert description of the system by UML state
diagrams to the target platform implemented as small embedded systems, or, if it is necessary, to transfer it directly to the
hardware implemented using e.g. by FPGA. Our aim, therefore, was the proposal of a universal procedure that can convert
any description by Petri nets to an equivalent description using UML state machines. This would have allow us to simulate
virtually the design of communicating agents described by Petri nets, and then transform it into an effective solution based
on state diagrams.

2 Formal definition and basic terminology

The following formal definition is loosely based on Peterson 1. Many alternative definitions exist.

2.1 Syntax

A Petri net graph (called Petri net by some, but see below) is a 3-tuple (S,T,W), where:

• S is a finite set of places;
• T is a finite set of transitions;
• S and T are disjoint, i.e. no object can be both a place and a transition;
• W : (S × T) ∪ (T × S) → N is a multi-set of arcs, i.e. it defines arcs and assigns to each arc a non-negative integer

arc multiplicity; note that no arc may connect two places or two transitions.

 2

The flow relation is the set of arcs: F = {(x,y) | W(x,y) > 0}. In many textbooks, arcs can only have multiplicity 1, and
they often define Petri nets using F instead of W. A Petri net graph is a bipartite multidigraph (S ∪ T, F) with node parti-
tions S and T.

The preset of a transition t is the set of its input places: •t = {s ∈ S | W(s,t) > 0}; its postset is the set of its output places:
t• = {s ∈ S | W(t,s) > 0}.

A marking of a Petri net (graph) is a multiset of its places, i.e., a mapping M : S → N . We say the marking assigns to
each place s ∈ S a number M(s) of tokens.

A Petri net (called marked Petri net by some, see above) is a 4-tuple (S,T,W,M0), where

• (S,T,W) is a Petri net graph;
• M0 is the initial marking, a marking of the Petri net graph.

2.2 Execution semantics

The behavior of a Petri net is defined as a relation on its markings, as follows. Note that markings can be added like any
multiset:

M + M’ = { s → M(s) + M’(s) | s ∈ S }.

The execution of a Petri net graph G = (S,T,W), can be defined as the transition relation →G on its markings, as follows:

• for any t in T:
M →G,t M’ ↔ ∃M’’ : S → N : M = M’’ + Σ s∈SW(s,t) ∧ M = M’ + Σ s∈SW(s,t)
M →G M’ ↔ ∃t ∈ T : M →G,t M’.

In words:
• firing a transition t in a marking M consumes W(s,t) tokens from each of its input places s, and produces W(t,s) to-

kens in each of its output places s
• a transition is enabled (it may fire) in M if there are enough tokens in its input places for the consumptions to be

possible, i.e. iff:
∀s ∈ S : M(s) ≥ W(s,t).

We are generally interested in what may happen when transitions may continually fire in arbitrary order. We say that a
marking M' is reachable from a marking M in one step if M →G M’ ; we say that it is reachable from M if M →*G M’ ,
where →*G is the transitive closure of →G; that is, if it is reachable in 0 or more steps.

For a (marked) Petri net N = (S,T,W,M0), we are interested in the firings that can be performed starting with the initial
marking M0. Its set of reachable markings is the set R(N) = { M’ | M0 →*G M’ }. The reachability graph of N is the transi-
tion relation →G restricted to its reachable markings R(N). It is the state space of the net. A firing sequence for a Petri net
with graph G and initial marking M0 is a sequence of transitions σ = 〈ti1 … tin〉 such that M0 →G,ti1 M1 ∧ M1 →G,ti2 M2 ∧
… ∧ Mn-1 →G,tin M. The set of firing sequences is denoted as L(N).

 stm Petri Nets

Producer
waits

producer
works

Product
ready

on the way Product
consumed

consumer consumes

Consumer
waits

del ivering
product

del ivered
product

Fig. 1. Petri Net for Producers-Consumers

As an example of a Petri net on the Fig. 1 there is presented the specification of the classical problem of Producers-
Consumers.

3 UML State Machines

UML state machine 3, formerly known also as UML statechart, is an object-based variant of Harel statechart 1 adapted
and extended by the Unified Modeling Language.

UML state machines overcome the limitations of traditional finite state machines while retaining their main benefits. UML
statecharts introduce the new concepts of hierarchically nested states and orthogonal regions, while extending the notion of
actions. UML state machines have the characteristics of both Mealy machines and Moore machines. They support actions
that depend on both the state of the system and the triggering event, as in Mealy machines, as well as entry and exit ac-
tions, which are associated with states rather than transitions, as in Moore machines.

The term "UML state machine" can refer to two kinds of state machines: behavioral state machines and protocol state
machines. Behavioral state machines can be used to model the behavior of individual entities (e.g., class instances). Proto-
col state machines are used to express usage protocols and can be used to specify the legal usage scenarios of classifiers,
interfaces, and ports.

State diagrams are used to give an abstract description of the behavior of a system. This behavior is analyzed and repre-
sented in series of events, that could occur in one or more possible states. Hereby "each diagram usually represents objects
of a single class and track the different states of its objects through the system" 3.

3.1 Syntax

The UML state machine is a 7-tuple (Q,Σ,Z,∆,Ω,q0,F), where in the classic form of a state diagram for a finite state ma-
chine it is a directed graph with the following elements:

• States Q: a finite set of vertices normally represented by circles and labelled with unique designator symbols or
words written inside them;

• Input symbols Σ: a finite collection of input symbols or designators;
• Output symbols Z: a finite collection of output symbols or designators;
• Edges δ∈∆ represent the "transitions" between two states as caused by the input (identified by their symbols

drawn on the "edges"). An 'edge' is usually drawn as an arrow directed from the present-state toward the next-
state. This mapping describes the state transitions, that is to occur on input of a particular symbol. This is written
mathematically as δ : Σ × Q → Σ;

• The output function ω∈Ω represents the mapping of input symbols into output symbols, denoted mathematically
as ω : Σ × Q → Z;

• Start state q0: (not shown in the examples below). The start state q0 ∈ Q is usually represented by an arrow with
no origin pointing to the state. In older texts, the start state is not shown and must be inferred from the text.

• Accepting states F: If used, for example for accepting automata, F ⊆ Q is the accepting state. It is usually drawn
as a double circle. Sometimes the accept state(s) function as "Final" (halt, trapped) states.

For a deterministic finite state machine (DFA), nondeterministic finite state machine (NFA), generalized nondeterminis-
tic finite state machine (GNFA), or Moore machine, the input is denoted on each edge. For a Mealy machine, input and
output are signified on each edge, separated with a slash "/": "1/0" denotes the state change upon encountering the symbol
"1" causing the symbol "0" to be output. For a Moore machine the state's output is usually written inside the state's circle,
also separated from the state's designator with a slash "/". There are also variants that combine these two notations.

For example, if a state has a number of outputs (e.g. "a= motor counter-clockwise=1, b= caution light inactive=0") the
diagram should reflect this : e.g. "q5/1,0" designates state q5 with outputs a=1, b=0. This designator will be written inside
the state's circle.

3.2 Execution semantics

The behavior of a state machine A=(Q,Σ,Z,∆,Ω,q0,F) is defined as a transition relation →A relation on its states, as follows.
Let A be in the state q and there are some multiset E of events currently happened. There also can exists a countable num-
ber of global variables forming the global state of the machine. The state machine selects all possible transitions and evalu-
ates their guards. Then select one of the resulting set of possible transitions and fires the appropriate change. Firing a tran-
sition changes the active states, and runs attached actions defined by the output function ω. The behavior of the state ma-
chine is done by the transitive and reflexive closure of →A denoted as →*A. We are generally interested in what may hap-
pen when transitions may continually fire in arbitrary order.

 4

4 Example: DFA, NFA, GNFA, or Moore machine

S1 and S2 are states and S1 is an accepting state. Each edge is labeled with the input. This example shows an acceptor for
strings over {0,1} that contain an even number of zeros.

4.1 Example: Mealy machine

S0, S1, and S2 are states. Each edge is labeled with "j / k" where j is the input and k is the output.

Fig. 2. An example of DFA

4.2 Harel statecharts

Harel statecharts 1are gaining widespread usage since a variant has become part of the Unified Modeling Language. The
diagram type allows the modeling of superstates, orthogonal regions, and activities as part of a state.

Fig. 3. An example of Mealy machine

Classic state diagrams require the creation of distinct nodes for every valid combination of parameters that define the state.
This can lead to a very large number of nodes and transitions between nodes for all but the simplest of systems (state and
transition explosion). This complexity reduces the readability of the state diagram. With Harel statecharts it is possible to
model multiple cross-functional state diagrams within the statechart. Each of these cross-functional state machines can
transition internally without affecting the other state machines in the statechart. The current state of each cross-functional
state machine in the statechart defines the state of the system. The Harel statechart is equivalent to a state diagram but it
improves the readability of the resulting diagram.

4.3 UML state diagram

The UML state diagram is essentially a Harel statechart with standardized notation, which can describe many systems,
from computer programs to business processes. The following are the basic notational elements that can be used to make
up a diagram:

• Filled circle, pointing to the initial state.
• Hollow circle containing a smaller filled circle, indicating the final state (if any).
• Rounded rectangle, denoting a state. Top of the rectangle contains a name of the state. Can contain a horizontal

line in the middle, below which the activities that are done in that state are indicated.
• Arrow, denoting transition. The name of the event (if any) causing this transition labels the arrow body. A guard

expression may be added before a "/" and enclosed in square-brackets:
(eventName[guardExpression]),
denoting that this expression must be true for the transition to take place. If an action is performed during this
transition, it is added to the label following a "/"
(eventName[guardExpression]/action).

• Thick horizontal line with either x>1 lines entering and 1 line leaving or 1 line entering and x>1 lines leaving.
These denote join/fork, respectively.

stm Simulator State machine

Simulator running

Simulator paused

+ do / wait

Log Retrieval

+ do / output log

[Pause]

[Data requested]

[Start]

[Unpause]

[Continue]

[Stop]

[Stop]

Fig. 4. Example UML State diagram.

5 State diagrams versus flowcharts

Newcomers to the state machine formalism often confuse state diagrams with flowcharts. For a long time, the UML speci-
fication wasn’t helping in this respect because it used to lump activity graphs in the state machine package (the new UML
2 3has finally separated activity diagrams from state machines). Activity diagrams are essentially elaborate flowcharts.

The figure Fig. 5 below shows a comparison of a state diagram with a flowchart. A state machine (panel (a)) performs
actions in response to explicit events. In contrast, the flowchart (panel (b)) does not need explicit events but rather transi-
tions from node to node in its graph automatically upon completion of activities.

Fig. 5. State machine (a) versus activity diagram (b)

Graphically, compared to state diagrams, flowcharts reverse the sense of vertices and arcs. In a state diagram, the pro-
cessing is associated with the arcs (transitions), whereas in a flowchart, it is associated with the vertices. A state machine is
idle when it sits in a state waiting for an event to occur. A flowchart is busy executing activities when it sits in a node. The
figure above attempts to show that reversal of roles by aligning the arcs of the state diagrams with the processing stages of
the flowchart.

You can compare a flowchart to an assembly line in manufacturing because the flowchart describes the progression of
some task from beginning to end (e.g., transforming source code input into object code output by a compiler). A state ma-
chine generally has no notion of such a progression. The door state machine shown at the top of this article, for example, is
not in a more advanced stage when it is in the "closed" state, compared to being in the "opened" state; it simply reacts dif-
ferently to the open/close events. A state in a state machine is an efficient way of specifying a particular behavior, rather
than a stage of processing.

The distinction between state machines and flowcharts is especially important because these two concepts represent two
diametrically opposed programming paradigms: event-driven programming (state diagrams) and structured programming
(flowcharts). You cannot devise effective UML state machines without constantly thinking about the available events. In
contrast, events are only a secondary concern (if at all) for flowcharts.

 6

6 Petri Nets versus State Machines

An interesting question is whether we can substitute arbitrary Petri net by a state machine with equivalent behavior, and
vice versa. Let us suppose a (marked) Petri net N = (S,T,W,M0), and we have to construct a state machine with the same
behavior. One possible solution can be an extension - to allow arcs to flow from any number of states to any number of
states. This only makes sense if the system is allowed to be in multiple states at once, which implies that an individual state
only describes a condition or other partial aspect of the overall, global state. The resulting formalism is known as a Petri
net.

We will model marked Petri net N = (S,T,W,M0), by the state machine A = (Q,Σ,Z,∆,Ω,q0,F) and the external memory
MA: Q → N. The state machine A has the finite set of states Q=S. Each place s∈S will be represented by the appropriate
state q∈Q. Each transition t∈T will be represented by an appropriate fork or join element f∈F=T. If the transition t has one
input arc, we will use the fork element, if it has one output arc, we will use join element, otherwise we will use both of
them. Arcs from W will be represented by edges from states to forks or from forks to states. Whenever an arc w(s,t) = n ∈
(S×T) → N, we add an egde δ from the state s into element f (fork or join element), and we add the guard condition for f
requiring n tokens at the input state s. Whenever an arc w(t,s) = n ∈ (T×S) → N, we add an egde δ from the element f (fork
or join element) to the state s, and we add the action to f generating n tokens to the output state s.

For the initial marking M0, we will copy its setting into the memory MA, therefore the initial state of this memory is du-
plicate copy of the initial marking: MA(s) = M0(s).

We add a start event α to all edges in A. Whenever we generate the event α, all transitions are activated, but only those
satisfying their guards are enabled. The state machine determines one of them and fires appropriate transition. The result of
this transition is the change of the active state and also change of the external memory MA - it also changes the set of satis-
fied guards. We again generate the event α, and the process continues. The start of the machine is realized by the stating
state attached to an appropriate state. The included action sets the initial marking into MA.

The Petri net does not specify the final state. The Petri net stops only if it reaches a state, where no transition can be
fired. It could be find out with the help of the reachability graph. In such a case we have to decide, whether this situation
represents successful or failure state.

6.1 The Example

Let us imagine the Petri net on the Fig. 1 for the problem Producer-Consumer. The above conversion gives us the state
machine on the Fig. 6.

 stm Producer-Consumer

Producer waits

on the way

Consumer waits

Product ready Product consumed

delivered product

product delivery

finish
start
/add token to Producer waits
add token to Consumer waits
generate start event [token exists]

/delete
token from
Consumer
waits

Consumer consumes [token exists]
/product consumed
delete token from Product
consumed

/add token to Producer works
generate start event

/add token to Product ready
generate starting event

Producer works
[token exists]
/produce
product

[token exists]
/product
del ivery

[token exists]
/delete token
from on the way

/add token to product consumed
generate start event

/add token to Consumer waits
generate start event

/add token to on the way
generate start event

Fig. 6. Producer-Consumer state machine

7 State machines versus Petri Nets

Another interesting question is whether we can substitute arbitrary state machine by a Petri net with equivalent behavior.
Let us suppose a state machine A = (Q,Σ,Z,∆,Ω,q0,F), and we have to construct a (marked) Petri net N = (S,T,W,M0). One
possible solution can be an extension - to allow arcs to flow from any number of states to any number of states. This only
makes sense if the system is allowed to be in multiple states at once, which implies that an individual state only describes a
condition or other partial aspect of the overall, global state. The resulting formalism is known as a Petri net.

We will model a state machine A = (Q,Σ,Z,∆,Ω,q0,F) by a (marked) Petri net Φ(N) = (S,T,W,M0), but for the sake of sim-
plicity, and for the purposes of this paper we limit these state machines to only such machines, having only fork and join
transitions. The finite set of states Q is simulated by places S, S=Φ(Q). Each edge δ∈∆ will be represented by the appropri-
ate transition Φ(δ)=t∈T=Φ(∆). Each transition t∈T represents the appropriate fork or join element. If it is a fork, the transi-
tion t has one input arc. If it is a join element, the transition will have one output arc. Arcs from W will represent appropri-

ate edges from states to forks (joins) or from forks (joins) to states. We also add guard conditions to generated arcs. As an
example we can apply the above procedure to the state machine from the Fig. 6. The result is the Petri Net on the Fig. 7.

Fig. 7. Resulting Petri Net

8 Conclusions

In the foregoing chapters we have shown that any Petri net can be replaced by an equivalent state machine. So it is the base
idea that developers can be freed from Petri nets. It's not strict restrictions - Petri nets can be used where there is a descrip-
tion of the network easier to use than using the state machine description.

The conversion allows the integration of flowcharts within Harel statecharts and Petri nets. This extension supports the
development of software that is both event driven and workflow driven.

In the future work we have to try more experiments on more complex examples. We also think of applications in various
fields (i.e. medicine, data mining, etc.). This contribution is partially based on the former work presented in the paper 2.

Acknowledgments

This work has been supported by the Ministry of Education, Youth and Sports under Research Program No. MSM
6840770014, and also by the grant project of the Czech Grant Agency (GA_CR) No. GA201/09/0990, and also by the
AVAST Foundation.

References

1. Harel, David (1987). Statecharts: A Visual Formalism for Complex Systems. In: Science of Computer Pro-
gramming 8 (1987), pp. 231-274, North-Holland 1987.

2. Kubátová, Hana – Richta, Karel – Richta, Tomáš: Can Software Engineers be Liberated from Petri Nets?
In: ITAT 2013, pp. 121, CreateSpace Independent Publishing Platform, ISBN 149095208X. Donovaly, Slo-
vakia 2013.

3. OMG (February 2009). OMG Unified Modeling Language (OMG UML), Superstructure Version 2.2.
http://www.omg.org/spec/UML/2.2/Superstructure/PDF. Retrieved 2009-02-15.

4. Peterson, James L. (1977). "Petri Nets". ACM Computing Surveys 9 (3): pp. 223–252.
doi:10.1145/356698.356702

5. Petri, Carl A. (1962). Kommunikation mit Automaten. Ph. D. Thesis. University of Bonn (in German).
6. Petri, Carl A. - Reisig, Wolfgang: Petri net. http://www.scholarpedia.org/article/Petri_net. Retrieved 2008-

07-13.
7. Wikipedia [Petri Nets]. Retrieved 2013-10-11.
8. Wikipedia [UML State Diagrams]. Retrieved 2013-10-11.

Case Study of Legacy Systems: Converting and
Improvement

Martin Chlumecký

Department of Computer Science and Engineering, Czech Technical University,
Karlovo náměstí 13, 121 35 Praha 2, Czech Republic

chlumma1@fel.cvut.cz

Abstract. This work summarizes existing approaches of reverse engineering
with focus on procedural origin software; for short legacy software. Today,
there is much legacy software that are still used and requested for their
modifications which are still required. Our aim is to improve, extend or create a
new methodology for converting procedural legacy software into object
oriented architecture. We show an instance of legacy software that was written
in FORTRAN-77 and our observation that we received during a process of
transformation into a new platform. The instance also has been improved about
optimizing algorithm and we present notes of improvement process.

Keywords: reverse engineering, legacy software, procedural code, call graph,
transformation, FORTRAN

1. Introduction

Software reverse engineering is a very interesting part of software engineering. It is
defined as the process of discovering system through analysis of its structure,
function, and operation [24]. Today, it is well known that massive computer programs
are complex and very difficult to maintain, especially procedural legacy software that
includes millions of source code lines. Reverse engineering is usually conducted to
obtain missing knowledge, ideas, and design. In some cases, the information is owned
by someone who does not want to share them. In other cases, the information has
been lost or destroyed.

Legacy software is origin software, a computer system or an application program
which has been written in a programming language which is not current.
Understanding and modifying code in legacy software is very challenging because it
is time consuming and costly. The documentation is usually out-of-date because
designers had not maintained it [4]. The main purpose of this level is refactoring and
an expandability of the analysed system. Typically, the level is used on a transition to
a new technology or a new platform. A secondary purpose is a sustainability of
implementation documentation in up to date.

Nowadays, there are many methods of reverse engineering which are used on
object oriented architectures because they are very popular and extended. But even
today, there are many systems that were written in procedural language and they are

still being used and the requests for modifying and extending legacy software are still
involved.

As regards a legal issue, I refer to the book [9] the chapter: “Piracy and Copy
Protection”.

1.1 Motivation

This time we get to the main problem and the motivation of this work. How to reverse
origin procedural legacy software?

There is still much legacy software that was written in procedural language; e.g.:
COBOL, FORTRAN, ADA etc. Each language has been primarily designed for
another purpose. The FORTRAN has been designed for scientific computing.
Conversely, the COBOL, as the name of the language indicates (COmmon Business
Oriented Language), has been designed for commercial and later also database
applications.

The aim is to transform legacy software into a new platform or a new technology
and take advantages of knowledge that legacy software implements. There are many
reasons to do it and I can pick up the most frequent:
1. Hardware restriction – binary files of legacy software are not usually compatible

with new hardware architectures. If there is a need to replace a hardware which the
original runtime environment (or virtualized) cannot be restored on, legacy
software becomes unusable.

2. Software restriction – legacy software often has a limited amount of input and
output data. The limit hinders from an effective use. Very old legacy software
allows only text input.

3. Software bugs – if a bug is found in legacy software during software life cycle and
when a support is not available, there is no possibility how to fix the software.

The documentation is another reason for using the reverse engineering. If the

documentation has been lost of any reasons or it is out-of-date, it is necessary to
create a new one or to update it. After reversing, a user or implementation
documentation is a by-product that is captured e.g.: with UML or another notation.

1.2 Problems

However, reversing of legacy software brings problems which inhibit from easy
transformation into a new platform.

Large legacy software are sometimes composed of several hundred thousand lines
of source code. This case naturally makes more difficult to separate a code into two
categories. The first part represents a code which contains knowledge of legacy
software and the second part comprises only code with system routines without
knowledge (memory management, management of global variables, etc.).

The next problem is a procedural paradigm of legacy software. If an object
oriented source code is reversed then the situation is straightforward because of the
code which is composed from elements of object world such as classes, packages etc.

Nevertheless, if we want to transform a procedural code into an object code, we have
to determine potential objects which will be used for compilation into a new
architecture used in object world.

Legacy software almost has no support. Usually there is no current software
documentation which could be used to ascertain the basic architecture and
functionality. Mostly there are available only users of the legacy software who
naturally have no experience in the field of software engineering thus they can
provide only functional requirements.

Very old legacy systems have no graphic user interface and after the
transformation it is necessary to design a new GUI so that current users can easily
orientate in this new software.

2. Related Work of Reverse Engineering

An analysis of the object oriented source code is much easier than an analysis of the
procedural code. In the object source code it is evident to distinguish what is a class
and what is a package. This implies that refactoring or a transformation of an object
oriented code into other architecture is a straightforward.

Nevertheless, the transformation of a procedural code into an object code is many
times more difficult. A procedural code does not contain classes neither packages.
The code is only composed from methods and global variables. The structure of a new
class is unclear. It is ambiguous which methods and attributes will be used by the
class and which function will be performed by the class. Another difficulty is to
recognize useful parts of the procedural code and parts not including knowledge of
legacy software which will be used in a new system.

In the next section there are described basic methods for analysis of procedural
source code.

2.1 Call Graph

In [18] Ryder has described a call graph as a directed graph that represents calling
relationships between methods in a computer program. Each node represents a
procedure and each edge (f, g) indicates that procedure f calls procedure g. A cycle in
the graph indicates recursive procedure calls.

The author of the paper [2] has described a progress how to create a call graph
from individual methods of object source code. However, each program has an
indeterminate call graph because its structure is depended on input data. A doubt of a
call graph structure is described in [14].

Methods described above are from object oriented world, but the method how to
create an applicable procedural call graph of legacy software is still missing on the
field of reverse engineering, eventhough it is a very important tool.

2.2 Identifying Domain Variables

All knowledge which is hidden in legacy software is defined by its output which is
described by its users. In a code it means printing of knowledge variables. These
variables are called domain variables. The paper [23] proposes a solution for
identifying domain variables automatically from legacy code. Domain variables are
captured by Data Dependence Graph (DDG). DDG is created by following four steps
[3]:

1. generating the DDG of legacy system
2. identifying pure domain variables
3. identifying all domain variables which has an effect to output domain variables
4. domain variables management

Variables with knowledge data can be identified on the basis of these steps. This

brings us to a next problem – the problem of identification of objects in procedural
source code.

2.3 Identifying Object in Procedural Source Code

An object is a collection of operations that share a state and its operations determine
the behaviours. The shared state is hidden from the outside world and is accessible
only to the operations of an object. The object identification is very thorny issue in
reverse engineering of procedural code. This issue is described in papers [6, 19 and 5]
in the field of legacy software. All papers have very similar approaches that are
finally classified according to two dimensions:

1. the ability to identify volatile objects versus the ability to identify persistent
objects;

2. the ability to simply separate up a legacy system into objects versus the ability to
abstract an architecture (i.e. relations between objects).

An identification of business objects [25] is not pure programming but it can help
with first analysis of legacy software. The principle is similar as in [6, 19] but the
output is not implementation or analytical objects but objects of business processes.

Sward and Thomas in [21] have chosen another tactic. They have created a set of
definitions so called classifications which sort procedural methods into groups. For
each group a transformation rule has been deduced which defines a new object
formally. This approach can process also user defined data structures.

A creation of object oriented paradigm from a procedural source code brings
problems of high level of cohesion and a low level of coupling. Sahraoui in [20] tries
by set operations to reduce an impact of a transformed object source code. He uses a
genetic algorithm to reduce the impact. The algorithm tries to find as good as possible
sequence of set operations.

The article [1] aims with an identification of objects in FORTRAN-77 source code.
The output of the method is a modified call graph which contains nodes that represent
objects and edges represent the association between objects. The previous work
described the identification in the general procedural source code. However, each

procedural language has specific features. These features are not captured in general
methods for object identification.

2.4 Graph Transformations

Further useful methods are graph transformations which are used to graph
simplification that represent a structure of analysed programs; see the section above.
The main problem of a call graph is its complexity. If an analysed program has a large
number of source codes then the graph is confusing. Much of the code in legacy
software is likely to be redundant, often providing the same or similar capabilities in
different subsystems that make up the overall structure [7].

Taentzer in his work [22] describes a mapping of a transformation problem from
general model into a graph transformation. It is a common process how to simplify
the model without causing a lot of important knowledge information.

In [10] Fahmy describes how graph transformations help to understand and to
improve software. He shows different levels of an abstraction and he focuses on
software architectures. He has found that extracted architecture has deviated from our
mental model of analysed software. There was developed a process how to shift
origin architecture and thereby to transform a software architecture into other which is
clearer.

In paper [8] there is described in a detail way a tool and a methodics for
maintenance of legacy systems that documents have been lost or have not been kept
up-to-date with the actual implementation. It focuses only on source code of COBOL
language and its code analysis, re-design, and code transformation to an object-based
architecture.

3. Approach on Real Instance of Legacy Software

All experiments were performed on a procedural code that was written in
FORTRAN-77 in 1980 and contains about 30,000 lines of source code. It was first
deployed on mainframe EC 1021 in our country. The software served as a tool for
hydrologists in the Institute of Hydrodynamics of the Academy of Sciences of the
Czech Republic. It had used legacy software for simulations of hydrological models.

Before the transfer we tried to recompile legacy software by using new compilers
of FORTRAN. Unfortunately, the legacy source code contains features of
FORTRAN-77 which are not supported in new compilers. Moreover, it would be
much time-consuming to modification the legacy code in such way that the new
compiler would be able to process it. It would take more time than to rewrite whole
legacy software into new programming language. The origin compiled file was
subjected to decompilation. However, the EXE file could not be processed in 100 %.
Current tools were not able to process the old structure of the file.

The software was transformed into object design and was implemented in C++.
The process of the transformation was following:

1. To create the call graph captured by GXL [15]. We have created a simple
metamodel of FORTRAN language for the purpose of the analysis and also the
structure of the call graph which fulfils the GXL standard.

2. The procedural architecture of legacy software was transformed into the object
design.

3. The object architecture was refactored and implemented. The used design
patterns simplified the transformed architecture and made it more extensible.
Further, a graphic user interface has been designed.

4. The legacy software contained implementation bugs that were fixed in the new
software. The bugs have been discovered by users of the legacy software.

5. The new software has been extended by an optimizing algorithm which makes
the work faster and more effective.

The most interesting section is item no. 2. In the first instance, it is necessary to

convert FORTRAN source code into the target language. In our case, it is the C++
language. This process is allowed by the Objexx F2C++ program. The result of
F2C++ is a set of C++ methods without object oriented features.

The next step is to create a single superclass which will encapsulate the methods
described above. In other words, it is necessary to compile and to test the
functionality of the converted software. The single superclass is very chaotic. The
DDG approach will help us to determine which of the methods will be excluded from
the single superclass.

To the gradual tuning of C++ source code comes about in the step 3. This means
that the single superclass is split into more classes in accordance to object oriented
features; e.g. Liskov substitution principle, low coupling and high cohesion. This step
is very demanding for testing. The converted software must be tested to verify its
functionality after every major refactoring. This step includes a possibility to use
design patters.

Great helpers for all these steps are UML diagrams and an architecture captured by
various graphs. These graphs help to classify the methods of the single superclass into
individual classes according to their functionality.

The purely object part of the work has been situated into the step no. 5. It was only
to integrate a new functionality into the existing system. The whole process has been
realized by the classical software development through an analysis, a design and an
implementation. The analysis related mainly to the study of hydrological models. The
design has been made by using UML diagrams and design of the interface – adapter –
for the converted and newly designed software plugin. For your information, we state
that the converted software has been extended by a genetic optimization algorithm,
which streamlines the original hydrological model [26].

4. Experiments and Results

4.1 Call Graph

The structure of the call graph has been inspired by [11]. A doubt that accompanies
the generation of the call graph [14] was ignored. The call graph was generated as a
full call graph which contains all procedures even the procedures depended on input
data. The use of the graph got more difficult by its size because it contains about 120
nodes. The call graph has been refactored by tools which support the work with
standard GXL. The structure of the graph was described and published in [27].

4.2 Identifying Domain Variables

The call graph has been simplified by the identification of domain variables. The
variables have been detected by methods which print knowledge data into files. The
domain variables have helped to determine the path from the leaf to the root. The leaf
represents a procedure which prints data and the root is the main procedure. This
approach is simpler than the approach described in [14]. The graph has been
simplified and has contained about 80 nodes and in addition to that this approach
helped to determine which procedures contain knowledge and which not.

4.3 Transform to Object Oriented Architecture

The transformation into object architecture was performed manually because it was
necessary to transform only about 12 % of the functionality of the legacy software.
Potential objects have been identified by [6]. However, the results have not been
satisfying. The method has generated many classes which often contained only an
attribute or a method. These classes have been pontificated manually afterwards. The
modifications have been realized in Enterprise architect tools where heads of the
classes and methods for new objects have been generated. The implementation of
individual methods has been manually converted into the newly created classes.

4.4 Design Pattern

The final object oriented architecture has been implemented and tested if it returns the
same results as the legacy software. Thereafter it was necessary to refactor the new
architecture by design patterns. However, the detection of available design pattern is
not applicable. The methods described in [16, 13, 12] are devised for an analysis of
object oriented software which has been designed as object oriented but for the
converted architecture the methods do not provide good results. This state is probably
caused by impurity of the converted architecture. Design patterns used in the new
architecture have been identified manually again. The patterns have improved both

the readability of the new source code and the asymptotic complexity of legacy
algorithms.

5. Conclusion

The process of converting procedural code into object code described above has
induced several findings which should be researched again.

In our example there has been created a single purpose call graph for FORTRAN
based on GXL standard that helped to analyse the structure thanks to the tools which
support a graph transformations. The future research would be focused on creating a
universal call graph which implements GXL standard. This call graph should support
all features of the most common procedural languages.

Our example was converted manually. The future research should be focused on
formal definition of FORTRAN code transformation into object design by UML
diagrams. It would be necessary to create a metamodel of the FORTRAN language
and a metamodel of a target object oriented language. The next phase will be to define
transformation rules from one model to another one.

Design patterns are one of the major features of object oriented architecture.
Nevertheless in the reverse it is effective to use design patterns. For object oriented
architecture there exists DTTL language [17] which is a language for a description of
design patterns. If it could be already possible to identify design patterns in
procedural code, it would help to easier identification of the objects. In our example
we have used the design pattern Iterator and the architectural design Pipeline. This
design has been detected manually by the call graph and by the paths of the domain
variables. If the design patterns could have been described for example as a subgraph
of the call graph, it would be possible to recognize a similarity in the call graph thanks
to graph patterns and thereby there could be the possibility to estimate potential
design patterns.

The experiments have also showed that the identification of the objects is possible
by graph operations applied on a call graph. All circles have been extracted from the
call graph. All the methods (nodes) lying on the one circle are included into the same
package. The tree created by the identification of domain variables determined the
methods containing knowledge. The future work should be focused on the graph
operations and their impact to the call graph.

6. References

1. ACHEE, B. L.; CARVER, D. L. Identification and extraction of objects from legacy code.
In: Aerospace Applications Conference, 1995. Proceedings., 1995 IEEE. IEEE, 1995. p.
181-190.

2. ALI, Karim; LHOTÁK, Ondřej. Application-only call graph construction. In: ECOOP
2012–Object-Oriented Programming. Springer Berlin Heidelberg, 2012. p. 688-712.

3. AUSTIN, Todd M.; SOHI, Gurindar S. Dynamic dependency analysis of ordinary
programs. In: ACM SIGARCH Computer Architecture News. ACM, 1992. p. 342-351.

4. CANFORA, G and CIMITILE A, E. 1998. Software Maintenance. In Proc. 7th Int. Conf.
Software Engineering and Knowledge Engineering, 478-486.

5. CANFORA, Gerardo, et al. Decomposing legacy systems into objects: an eclectic
approach. Information and Software Technology, 2001, 43.6: 401-412.

6. CIMITILE, Aniello, et al. Identifying objects in legacy systems using design metrics.
Journal of Systems and Software, 1999, 44.3: 199-211.

7. COMELLA-DORDA, Santiago, et al. A survey of legacy system modernization
approaches. Carnegie-Mellon univ pittsburgh pa Software engineering inst, 2000.

8. CREMER, Katja; MARBURGER, André; WESTFECHTEL, Bernhard. Graph‐based tools
for re‐engineering. Journal of software maintenance and evolution: research and practice,
2002, 14.4: 257-292.

9. EILAM, Eldad. Reversing secrets of reverse engineering. Indianapolis: Wiley, 2005, xxviii,
589 s. ISBN 07-645-7481-7.

10. FAHMY, Hoda; HOLT, Richard C. Software architecture transformations. In: Software
Maintenance, 2000. Proceedings. International Conference on. IEEE, 2000. p. 88-96.

11. GRAHAM, Susan L.; KESSLER, Peter B.; MCKUSICK, Marshall K. Gprof: A call graph
execution profiler. ACM Sigplan Notices, 1982, 17.6: 120-126.

12. GUÉHÉNEUC, Y.-G.; ANTONIOL, Giuliano. Demima: A multilayered approach for
design pattern identification. Software Engineering, IEEE Transactions on, 2008, 34.5:
667-684.

13. GUÉHÉNEUC, Yann-Gaël; JUSSIEN, Narendra. Using explanations for design-patterns
identification. In: IJCAI. 2001. p. 57-64.

14. HASHEMI, A.; KAELI, D.; CALDER, Brad. Procedure mapping using static call graph
estimation. In: Workshop on Interaction between Compiler and Computer Architecture, San
Antonio, TX. 1997.

15. HOLT R. C., WINTER A. GXL: Toward a Standard Exchange Format. In Seventh
Working Conference on Reverse Engineering. IEEE Computer Society, Los Alamitos.
pages 162–171. 2000.

16. METSKER, Steven John a William C WAKE. Design patterns in Java: advanced patterns,
processes, and idioms. Upper Saddle River, NJ: Addison-Wesley, c2006, xiv, 461 p. ISBN
978-032-1333-025.

17. Ó CINNÉIDE, Mel; NIXON, Patrick. Program restructuring to introduce design patterns.
Trinity College Dublin, Department of Computer Science, 1999.

18. Ryder, Barbara G. Constructing the call graph of a program. Software Engineering, IEEE
Transactions on 3 (1979): 216-226.

19. SAHRAOUI, Houari A., et al. Applying concept formation methods to object identification
in procedural code. In: Automated Software Engineering, 1997. Proceedings., 12th IEEE
International Conference. IEEE, 1997. p. 210-218.

20. SAHRAOUI, Houari, et al. Object identification in legacy code as a grouping problem. In:
Computer Software and Applications Conference, 2002. COMPSAC 2002. Proceedings.
26th Annual International. IEEE, 2002. p. 689-696.

21. SWARD, Ricky E.; HARTRUM, Thomas C. Extracting objects from legacy imperative
code. In: Automated Software Engineering, 1997. Proceedings., 12th IEEE International
Conference. IEEE, 1997. p. 98-106.

22. TAENTZER, Gabriele, et al. Model transformation by graph transformation: A
comparative study. In: Proc. Workshop Model Transformation in Practice, Montego Bay,
Jamaica. 2005.

23. WANG, Xinyu, et al. Automatically identifying domain variables based on data
dependence graph. In: Systems, Man and Cybernetics, 2004 IEEE International Conference
on. IEEE, 2004. p. 3389-3394.

24. WATERS, R. G. and CHIKOFSKY, E. 1994. Reverse engineering: progress along many
dimensions. In Communications of the ACM, 37, 5, 22-25.

25. WIGGERTS, Theo; BOSMA, Hans; FIELT, Erwin. Scenarios for the identification of
objects in legacy systems. In: Reverse Engineering, 1997. Proceedings of the Fourth
Working Conference on. IEEE, 1997. p. 24-32.

26. CHLUMECKÝ, Martin. Optimizing of Parameters Soil Moisture Accounting Model (SAC-
SMA). In: POSTER 2013: 17th International Student Conference on Electrical
Engineering. Praha: Czech Technical University in Prague, 2012, s. 1-6.

27. CHLUMECKÝ, Martin. Practice Use of GXL in Reverse Engineering. In: Objekty 2012.
Praha: Vysoká škola manažerské informatiky a ekonomiky, a.s., 2012, s. 84-89.

A NEW APPROACH TO THE PREDICTION OF SOFTWARE

PROJECTS - THE DYPREP METHOD

J. Bartoška
1
- J. Doležal

2
 – B. Lacko

3

1 Czech University of Life Sciences, Faculty of Economics and Management, Kamýcká 129, 165 21 PRAGUE
2 PM Consulting, Husova 86, 565 01 CHOCEŇ

3 Technical University of Brno, Facuty of Mechanical Engineering, Technická 2, 616 69 BRNO

bartoska@pef.czu.cz, jd@pmconsulting.cz, lacko@fme.vutbr.cz

Abstract. This article describes the basis and characteristics of the DYPREP method for making predictions

about software projects. The method employs finite state machines and Markov chains. These allow the

behavioural dynamics of complex software development projects to be captured. It may serve as a means for

determining a project development forecast, particularly in terms of milestones and at moments the project

state is examined.

1 Introduction

Contemporary software development projects and information system development projects are highly complex

and undergoing implementation in the current turbulent global economic environment. What had been an

improvisational and, to some extent, chaotic management style has been supplanted by one which [4] employs

efficient methods for successful project completion. Contemporary project management, as promoted by the

International Project Management Association via the Spolecnost pro Projektove Rizeni v ČR (Project

Management Association of the CR), requires that flexible project management contain not only quality reporting

to the project team on the real state of the project, but also that the project parties and the team deal with the

issue of future project development in their situation reports.

Project development prognosis is rather new to the Czech Republic and a number of companies lack

sufficient experience with it. In most cases, project prediction is not carried out or is replaced by promises

claiming that the final deadline and that planned project costs will be maintained. It need not be emphasized that

these promises are very often based upon exaggerated optimism or are pure fantasy.

Another approach may also be encountered in which the project prognosis is refused in principle,

justified by the current turbulent environment. Proponents of this approach thus resign themselves to the

difficulties that come with project forecasting.

In the western countries, a projection of future project development is required as a matter of course as a

part of the common project development report and some methodologies make use of it as a key factor in

deciding whether the project should be continued. One example is the State Gate Method.

Projects which focus on introduction and use of information technologies require more intense

forecasting because they must take into account the consequences of the rapid development of these technologies

and the changes in customer requests with regard to the changes in the current global market.

This article demonstrates that a systematic approach brings positive results in the search for a solution.

mailto:bartoska@pef.czu.cz
mailto:jd@pmconsulting.cz
mailto:lacko@fme.vutbr.cz

2 Basis for and a systematic approach to project forecasting

A proper approach to project management and forecasting must be based upon an evaluation of past

project development and take into account potential future circumstances.

 Because the conditions influencing the originally planned path to the goal and the goal itself change in

the current turbulence, the management team must continuously forecast future conditions during project

management to do its work properly.

 At the system level, attention must be paid to past states of the project and their impact on both the

current and future situation. In current practice, situations arise in which the state of a particular project may be

rather poor, with deadlines not met and costs increasing. In spite of this, project managers and members of the

project team continue to be convinced that the project will be completed on time while maintaining planned

costs. And company management shares these expectations! But no current or past events justify such optimism

(think of projects carried out under Czech public administration, e.g., the vehicle registry, payment of social

benefits, etc.).

Fig. 1 Three timeframes considered

 In the course of these projects, there are characteristic periods (the transition from problem formulation

to analysis, from program design proposal to testing, to beta operation) during which significant cyclic

deviations from the time and cost values planned occur [11].

 Projects which also include program equipment development – today these include automation,

informatics and communication projects – are very sensitive to proper allocation of resources, particularly HR

(programmers, analysts, testers and implementers), because they use a large number of microprocessor systems.

In contrast to, e.g., investment projects, it is usually not possible to eliminate time delays by sufficiently

increasing the number of workers.

 Project behavioural dynamics are very important for their prediction from a system dynamics point of

view (see Šviráková [9]). For forecasting projects with a fairly high amount of randomicity, Markov chains seem

appropriate. They have been employed successfully by Kubiš [6] in research into software project risks.

 Kubiš’s work has shown the importance of using modelling and computer simulation in researching the

impact of chance phenomena on project development and project futures by revealing patterns involving the

count of random phenomena, the size of necessary reserves and the speed of degeneration of the entire system.

Ranzenhofer [7], a PhD student at ÚAI FSI VUT, Brno, carried out research into the use of computer

stimulation. The use of statistical methods for prediction was demonstrated by Šlechtová in her proposed use of

KVM [5] methodology.

 The basis noted above lays the groundwork for a new method, called DYPREP, allowing for advanced

prediction of software projects.

3 The DYPREP Method

 The DYPREP Method (an acronym for DYnamic PREdiction of Projects) is an advanced method for

making forecasts in project development. The initial version was developed at ÚAI FSI VUT, Brno and

described in the dissertation of Doležal [8]. Because of the complexity of the method, a detailed description

cannot be provided in this article. Only the basic characteristics and principles will be provided here. A detailed

description is available in the dissertation indicated and another description with an example and instructions for

use is being prepared for publication.

 Basic characteristics of DYPREP:

Project State Space DYPREP prediction is based upon defined project states characterized as part of the Earned

Value Method (EVM) by means of the CPI and SPI indexes.

 Past Today Future

 Start of project Finish of project

CPI > 1

CPI < 1

SPI > 1SPI < 1 1

23

4 5

6

78

9

10

11 12

13

Fig. 2 DYPREP State Space

State transitions Potential transitions between states are expressed in a transition diagram based upon 13

possible states.

1

23

4 5

6

78

9

10

11 12

13

Fig. 3 Project state transitions

Modelling using finite state machines The finite state machine is a formally deterministic entity with input,

output and a defined number of finite states. Any transition from a current state to a novel subsequent state

depends upon the input character accepted, as well as on the current state of the machine. With adequate

precision, such a finite state machine allows changes in the states of software development projects to be

modelled.

Using Markov chains to capture the stochastic dependence of transitions between states, captured by a

dependency matrix of potential transitions between the states of the project.

1,28;1,16

1,16;1,28

1,07;1,07

0,84;1,28

0,72;1,16

0,72;0,84

0,84;0,72 1,16;0,84

1,28;0,84

0,93;1,07

0,93;0,93 1,07;0,93

1;1

0,32

0,17

0
,3

2

0,
17

0,32

0,17

0
,3

2

0,
17

0
,2

3

0,23 0,23

0
,2

3

0
,2

3

0
,2

3

0,14

0,14

0
,1

4

0
,1

4

0,
09

8

0,
09

8

0,098

0,098

0,23 0,23

Fig. 4 Probability matrix for individual transitions

Taking the initial state into account This procedure allows the basic model to be adapted to real-world

conditions according to the environment in which the project takes place, using the so-called context factor, i.e.,

for the conditions in the particular IT automation of a company. The context factor is primarily influenced by the

size of the organization, the scope of the project, the maturity of the organization, the number of other projects,

the quality of work provided by contractors, etc.

Capturing the impact of decision-making entities on the project The targeted impact on future project

development is considered in projections of future program development by including the current impact. This

may be positive, negative or neutral, and is expressed in the methodology using the so-called direction and

power of impact on the project. This expresses the impact of the project manager or project team on the project

period being projected.

 4 Conclusion
 A detailed description of DYPREP would exceed the usual article-length exposition. A text is being

prepared for publication describing the method in detail and demonstrating individual steps in particular cases

and case studies.

 This article aims to draw attention to the method and inform readers of its existence.

 To this point, only very little attention has been paid to the issue of quality forecasting of the future

development of software and other projects. However, properly forecasting future project development is very

important. It is not simply a matter of determining potential deviations from planned costs and deadlines. Timely

identification of facts which may signal an upcoming crisis in a project and reacting to the potential crisis also

figure in. [2] When a crisis arises, it is important to recognize situations in which it is impossible to eliminate the

crisis and is instead more convenient to terminate the project and begin again with a modified version or another

project. The current situation in project management requires that project team members and project managers

get well acquainted with project forecasting and its methodology. DYPREP is one such methods and may also be

used for forecasting software projects.

References:

1. Dujka, J: Cost project prediction of automatic control systems. Ph.D. Thesis, TU of Brno, 2003, 86 p. (in

Czech)

2. Ondrejka, R.: Crisis of Projects . AUTOMA. Vol. 17, (2011) No. 1, p. 55-57 (in Slovac)

3. Matouš, V: Earned Value Analysis Method. In: Workshop IPRO2002. TU of Brno 2002, p. 35-44 (in Czech)

4. Mozga, J. - Vítek, M.: Project management and risk management. GAUDEAMUS, Hradec Králové 2002, 268

p. (in Czech)

5. Šlechtová, Y.: Project management method in mechanical company. Ph.D. Thesis. TU of Plzeň, 2001, 154 p.

(in Czech)

6. Kubiš, J.: Risk project management of very important risks. In: Proceedings of conference Software

Development 2002. TU of Ostrava 2002, p.109-116 (in Czech)

7. Ranzenhofer,T.: Simulation of random event in mechanical proceses. Ph.D. Thesis TU of Brno 2003, 71 p. (in

Czech)

8. Doležal, J.: Prediction in projects with Markov chains. Ph.D. Thesis, TU of Brno, 2010, 50 p. (in Czech)

9. Šviráková, E.: Dynamics of projects. Verbum 2011 Zlín (in Czech)

10. on-line http://www.ey.com/ Publication

11. Lacko, B.: New point of view on software life cycle of automatic control (in Czech) In: Proceedings of

conference Software Development 2003. Tanger Ostrava 2003, str. 76 – 84

Brief description of software architecture design

patterns

Matej Meško
1

1 University of Žilina in Žilina,

Faculty of Management Science and Informatics,

 Univerzitná 8215/1, 010 26 Žilina,

Slovak Republic
mesko@kst.fri.uniza.sk

Abstract. Correctly chosen software architecture design pattern can greatly

increase flexibility of the system itself. System can be easily modified through

the whole software development cycle. Aim of this paper is to describe

software architecture design patterns which divide application to multiple layers

and makes them more transparent and maintainable. In the most cases there are

three layers: presentation, logic and data layer.

1 Introduction

Many developers, from time to time (rather more frequently than less), hit an issue

that was solved many times before and will be many times in the future by the other

developers. As programmers are quite lazy creatures the software design patterns was

invented. Software patterns are templates for solving specific problems in software

design solutions and they are easy to modify and transform into code to solve a

problem.

This is one of benefits attributed the objected oriented programming philosophy

and writing reusable code. Those software patterns grow up to the architecture

software design which consists of some basic object hierarchy and rules of behavior.

Resulting system will be easier to develop and maintain. It will also be possible to

make more parallel work be done. [1][2][3]

2 Software architecture patterns for GUI applications

Principle of the software architectures design is based on dividing application

design into separated layer. Basic idea is to divide presentation code and data code

from each other and this design is called separated presentation. Designs coming

from separated presentation usually divide the application into three layers: data,

logic and presentation layer. [4]

Supposed meaning of each layer is as follows (communication between each of

individual layers is showed on following (fig. 1) :

 The data layer contains objects that make it possible for the rest of the application

to do some operations on persistently stored data (objects that encapsulate the

database tables, user data, items, etc.).

 The presentation layer represents user interface part of the application.

 The logic layer represents a mediator between the data and the presentation layer.

Makes all operations on the data objects (loads them, saves them or edits them) and

make them enviable for the user interface (e.g. encapsulate them for easer display

in the user interface). Also the events generated in the presentation layer are

captured and consumed here.

Fig. 1. Scheme of the communication flow in basic model.

Logic takes care of synchronizing state of data in presentation and data and can

change them.

But on background this synchronization can be achieved by various solutions. One

of the mostly used is observer synchronization. Object called observer is checking

whether state of observed object is changed. If it is made then observer makes some

action, usually update something. [5]

Great amount of presentation separation is allowed thank to other technique the

data binding, which allow programmer to strictly separate view from logic, thanks to

opportunity to invoke the calls instead call them directly. [6]

All of those mechanisms and layer division are applied in the models in following

sub-chapters.

2.1 Model-view-controller

Very first patter is the MVC (Model-View-Controller). It was invented in 70’s at

Xerox Prc. by Trygve Reenskaug as part of a Smalltalk-80. First mention of its

existence was published in “A Cookbook for Using the Model-View-Controller User

Interface Paradigm in Smalltalk-80” [7]. This model splits all application (as

separated presentation does) so is data logic and the user interface separated. MVC

model has three layers: [8]

 View is separated from model. View visualizes information from model. The same

information can be showed by various views (showing integer array as a table or as

a function). Observes the model for state change.

 Model makes raw data to be in a right format for application and programmer to

work with.

 Controller is standalone component or combined with view in pair and operates

with the application logic. Every interaction of the user (mouse move, click, text

input, etc.) runs adequate command on a model.

Clean MVC model works as follows: Model obtains data that application works

with. View makes visualization of those data from model to the screen and observes

model for state change (if it does, update of screen is executed). User interaction is

captured by controller which also decides a preformed operation – executes the

application logic. So when is a change of field value detected, at the first controller is

notified. Controller runs application logic (e.g. controls input) and makes commit on

model data. After data change in model, view updates itself because it observes it

(Figure 1). It should be in mind, that each element of the screen vas its own view and

controller. [9]

User interface is always consists of elements – widgets (check-boxes, buttons, text

areas, text-fields, list boxes, labels, etc.) The MVC model comes with problem. How

to change some widget property (e.g. selected item in list, font size, color of back-

ground, etc.)? The data about setting of widget property does not fit into model

definition, remember: view visualize raw data in encapsulation of model. This type of

data is more a matter of view state than model. Only way to achieve this is in making

a compromise of the MVC model purity. This is why there are so many of different

descriptions of MVC (they simply contain compromised solution in the description)

and misunderstanding of this architecture model. [10] [11]

Fig. 2.MVC scheme

2.2 Model-view-presenter

MVP (model-view-presenter) is similar to MVC and solves MVC GUI attribute

changing problem. MVP uses presenter instead of controller in MVC and the main

model

view controller

user
observe manipulate

interact

uses

difference is that presenter can manipulate view. Whole view consists of widgets

structure that corresponds to classics form and control model.

If there is a change in field, presenter is notified and it retrieves a new value. In

next step the presenter modify the model. Change of model state sends notification

back to the presenter. As the last step, the field GUI attribute can be changed (e.g.

font color).

There are two ways how to implement MVP model: supervising controller and

passive view. In supervising controller mode can view directly access model but only

for simple updates, complex ones must be done by the presenter. In passive view must

be all updates to view made by presenter. [9] [12]

 View visualizes information from model thought presenter. And passes user

interaction to the presenter. In supervising controller mode the view observes

model for simple changes, complex ones are provided by presenter.

 Model makes raw data to be in right format for application and program-mer to

work with and notify presenter of state change.

 Presenter makes operation (application logic) based on notification from model or

view and can make modifications to them either.

Fig. 3.MVP scheme

MVP in passive mode is great for unit testing, because all operation goes thought

presenter – contains the most of the presenter logic.

2.3 Model-view-adapter

MVA (model-view-adapter) pattern is similar to MVP. The main difference is in

layer separation. Model and view are completely speared of each and are connected

in-line through adapter(like passive mode in MVP).

Software pattern adapter is mid-interface that can mediate connection between of

other interfaces. Illustrated on real-life application (a very favorite demonstration) is

power plug adapter (Fig. 3). In the US there is used a different plug than in the Europe

so the mid-plug is needed (our adapter). [5]

model
view

presenter

user

interact

manipulate notify

observe

manipulate
notify

Fig. 4.Adapter real-life demonstration [6]

In MVA, the adapter obtains nearly whole application logic. The reason lies in the

possibility to change model, view or adapter itself (which comes from adapterpattern

and the model name). The model should allow:

 Allow to connect various views to one adapter

 Allow to use various adapters between same view and model

 Allow to change model

The big disadvantage is in complexity of adapter itself, which can be enormous

because of these possible changes. Functionality is the same as in the passive MVP:

 View is separated from model, showing data that had adapter filter and simples

from model. Catches user input and sent it to adapter.

 Model makes raw data to be in right format for application and programmer to

work with. Make notification of state change only to controller.

 Adapter catches events from view and makes changes to model; it is noticed of

model change and can update view.

Fig. 5.MVA scheme

2.4 Model-view-ViewModel

MVVM (model-view-view model) is based onthe presentation model (known also

as application model) in which GUI consist of widgets (alike the MVP). Main

model view

adapter

user
interact

notify

manipulate manipulate

notify

difference is that view can use data binding to get data or call methods and theview

modelcontains logic that is too specific to be included into view or model.[7]

User interaction is forwarded to theview model by data binding. Next can be the

modelmodified and if it is synchronization notification must be triggered, to make

view update changes. [8][9][7]

 View visualizes information from model thought view model. It also sends

notification of user interactions by data binding to view model.

 Model makes raw data to be in a right format for application and programmer to

work with.

 View model contains only presentation logic and logic that can be included in view

or model. Also it notifies the view for update.

Fig. 6.MVVM scheme

2.5 Presentation-abstraction-control

PAC (presentation abstraction control) is derivate from MVC. PAC creates a

hierarchical structures sub PAC elements. Elements communicate with each other

through their control part. PAC element consists of: [10]

 Control is the same as the MVC based controller, bud it notify its parent about

change.

 Abstraction contains data (or only part of the application data structure -

abstraction) as MVC model do.

 Presentation is the same as MVC view, displaying a data from the abstraction.

model
view

View
model

user

interact

manipulate data
binding

notify

Fig. 7.Notification flow in PAC structure [10]

If is change detected, local PAC element updates its own presentation

andabstraction. After that it sends notification about state change to its parent

element. Parent element notifies all its children and waits until their update end and

the higher parent can be notified. [17]

Conclusion

In common each of the above described models provides code reuse, greater

flexibility and makes application parts more depend-less. This helps to make project

code and architecture tided up which is the main point of all models. There is no clear

way to comparedescribed architecture design patterns. All I could do was to write

down their differences.

MVC if the oldestone and it is suitable for use in web applications. In such

applications theview (web browser) is greatly separated from themodel and

thecontroller (server side). Using MVC makes unit testing harder – elements in this

architecture are not all completely isolated.

MVP in passive mode is great with using of unit testing - model and view are

isolated. Communication flows thought the presenter, which contain presentation

logic. Example of using MVP could be the WinForms library.

MVA is usable in case of instantly changing and adapting application. Benefit is in

creating adapter that can control more views and use more variants of model, which

can cause big complexity of theadapter code. Unit testing is supported because of

element separation.

MVVM is very good with using of unit testing too. It was created for use in the

WPF library, targeting to write less code and use more of data binding.

Main difference of PAC to the other described models is that PAC component is

“numb” and power of this solution depends in PAC layering. Typical application for

using this model is monitoring system (train, car or aircraft monitoring system) where

PAC component can act as an agent.

ACKNOWLEDGEMENT

This contribution/publication is the result of the project implementation:

Centre of excellence for systems and services of intelligent transport II.,

ITMS 26220120050 supported by the Research & Development

Operational Programme funded by the ERDF.

"Podporujeme výskumné aktivity na Slovensku/Projekt je spolufinancovaný

zo zdrojov EÚ"

References

1. C. Zhang a D. Budgen, „What Do We Know about the Effectiveness of Software Design

Patterns?,“ rev. IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, 2012.

2. R. H. R. J. Erich Gamma, Elements of Reusable Object-Orented Software,

AddisonWesley, 1995.

3. R. M. H. R. P. F. Buschmann, Pattern-Oriented Software Architecture – A System of

Patterns, Chichester, UK: John Wiley and Sons, 1996.

4. M. Flower, „Separated Presentation,“ 2013. [Online]. Available:

http://martinfowler.com/eaaDev/SeparatedPresentation.html. [Cit. 2013].

5. oodesign.com, „Adapter Pattern,“ 2013. [Online]. Available:

http://www.oodesign.com/adapter-pattern.html. [Cit. 2013].

6. A. K. Singh, „Adapter Pattern,“ 2013. [Online]. Available:

https://sites.google.com/site/akstechtalks/tech-

topics/Architecture/patterns/implementation-patterns/structural-patterns/adapter. [Cit.

2013].

7. J. Gossman, „Introduction to Model/View/ViewModel pattern for building WPF apps,“ 8

11 2005. [Online]. Available:

http://blogs.msdn.com/b/johngossman/archive/2005/10/08/478683.aspx. [Cit. 10 2013].

8. M. Fowler, „GUI Architectures,“ 18 6 2006. [Online]. Available:

http://martinfowler.com/eaaDev/uiArchs.html. [Cit. 10 2013].

9. E. v. d. Valk, „The difference between model-view-viewmodel and other separated

presentation patterns,“ 14 8 2009. [Online]. Available:

http://blogs.msdn.com/b/erwinvandervalk/archive/2009/08/14/the-difference-between-

model-view-viewmodel-and-other-separated-presentation-patterns.aspx. [Cit. 10 2013].

10. G. s. architectures, „Presentation-Abstraction-Control,“ 2013. [Online]. Available:

http://www.dossier-andreas.net/software_architecture/pac.html. [Cit. 2013].

11. M. Fowler, „Observer Synchronization,“ 9 2004. [Online]. Available:

http://martinfowler.com/eaaDev/MediatedSynchronization.html. [Cit. 2013].

12. Microsoft, „Data Binding Overview,“ 2013. [Online]. Available:

http://msdn.microsoft.com/en-us/library/ms752347.aspx. [Cit. 2013].

13. G. Krasner a S. Pope, „A Cookbook for Using the Model-View-Controller User Interface

Paradigm in Smalltalk -80,“ JournalOfObjectOrientedProgramming (JOOP), 1988.

14. I. Cunningham & Cunningham, „Model View Controller History,“ Cunningham &

Cunningham, Inc., [Online]. Available:

http://c2.com/cgi/wiki?ModelViewControllerHistory. [Cit. 2013].

15. H. Mcheick a Y. Qi, „Dependency of components in MVC distributed architecture,“

Electrical and Computer Engineering (CCECE), 2011 24th Canadian Conference, pp.

000691 - 000694, 2011.

16. T. Reenskaug a J. O. Coplien, „The DCI Architecture: A New Vision of Object-Oriented

Programming,“ March 2009. [Online]. Available:

http://www.artima.com/articles/dci_vision.html. [Cit. 2013].

17. Microsoft, „Model-View-Presenter Pattern,“ 2013. [Online]. Available:

http://msdn.microsoft.com/en-us/library/ff647543.aspx. [Cit. 2013].

Recognition a structure in Java source code by
modified graph matching algorithm

Tomáš Bubĺık1

Czech Technical University in Prague, Faculty of Nuclear Sciences and Physical
Engineering, Trojanova 13, 120 00 Praha 2, CZE,

WWW home page: http://www.fjfi.cvut.cz

Abstrakt There exist a lot of techniques to detect a code pattern in a
program. This paper introduces a tool which is able to recognize both
the properties of a code snippet and even its structure. This tool uses
the Sripthon language to describe a snippet. A syntax tree is created
from a Scripthon source, and it is compared with a given Java source
code. Many optimizations take place during the tree matching process.
In conclusion, this tool offers a programmable searching while preserving
an acceptable speed. Therefore, the complete recognition process is very
fast, and can be used to scan the large programs.

Keywords: Scripthon, Java, abstract syntax tree, Java compiler API,
recognition, compiler

1 Introduction

In case of a growing project, on which a lot of developers working, soon or later
occurs the situation, where is it necessary to start with a codebase maintenance.
Programs consisting of a large source code are becoming chaotic, and many
times described illnesses start to appear (code duplicity, weak reusability, etc.).
It becomes necessary to maintain the source code somehow. There exist a lot
of tools and ways of how to approach this issue. In this paper described tool
serves to a programmable Java source code scanning. This tool is based on the
Scripthon language which was developed for these purposes in scope of this
paper. In this language, a script which describes a source code structure and
its properties can be written. Next, an abstract syntax tree (hereinafter AST)
is created dynamically from this script. On the other side, a similar tree is
created from a Java source, and these two trees are matched by a graph matching
algorithm. However, not only the shapes are compared, also the trees properties
are considered. To obtain the results faster, several graph optimizations are used
during this process. It is possible to scan a high amount of the classes of a source
code during a relative short time.

2 Graph matching

A graph is defined as a four-tuple g = (V, E, α, β), where V denotes a finite set of
nodes, E ⊆ V× V is a finite set of edges, α : V→ LV is a node labeling function,

2

and β : E→ LE is an edge labeling function. LV and LE are finite of infinite sets
of node and edge labels, respectively. All the graph in this paper are considered
to be directed.
A subgraph gs = (Vs, Es, αs, βs) of a graph g is a subset of its nodes and edges,
such that Vs ⊆ V, Es = E ∩ (Vs × Vs)
Two graphs g and g, are isomorphic to each other if there exists a bijective
mapping u from the nodes of g to the nodes of g,, such that the structure of the
edges as well as all node and edge labels are preserved under u. Similarly, an
isomorphism between a graph g and a graph g,

s of a graph g, is called subgraph-
isomorphism form g to g,.

A tree is connected and undirected graph with no simple circuits. Since a tree
can not have a circuit, a tree can not contain multiple edges or loops. Therefore,
any tree must be a simple graph. An undirected graph is a tree if and only if
there is a unique simple path between any two of its vertices.
The two graphs matching problem is actually the same as the finding the isomor-
phism between them. Moreover, matching the parts of a graph with a pattern is
the same challenge as the finding the isomorphic subgraph.
There are many approaches to this topic [1]. Subgraph isomorphism is useful to
find out whether a given object is part of another object or even of a collection
of several objects. The maximum common subgraph of two graphs g and g, is
the largest graph that is isomorphic to a subgraph of both g and g,. Maximum
common subgraph is useful to measure the similarity of two objects. Algorithms
for graph isomorphism, subgraph isomorphism and maximum common subgraph
detection have been reported in [2], [3], [4] and [5].

3 Scripthon language

For the effective source code patterns description, it was developed the Scripthon
language. This language has been constructed iteratively according to the needs
which arised together with demands on a source code scanning process.
Scripthon is a dynamically typed, interpreted, and non-procedural language. Its
translation into a tree-expressing form and its usage is very similar to the usage
of other modern script languages. The language was formed on the basis of the
references [6–13]. Because the language is designed to be a scripting language
only, there are no special constructions starting a script. Neither this language
is pure object-oriented. An input for a compiler is a text with a sequence of
commands. This sequence describes consecutive statements in a Java source
code. The commands with a variable detail degree correspond to a variable length
code segment. The detail level is not fixed and can vary in every command. One
command can correspond to a line of a source code; other one can describe the
whole class in Java. The Scripthon structure is very close to other contemporary
dynamic programming languages. The individual commands are separated by
lines. There is no command separator in Scripthon. Inner parts of blocks are tab

3

nested. A block is not delimited by any signs; just a hierarchy of tabulators is
used. An example:

Block() a
Loop(Type=while)

The complete definition of the Scripthon language semantics is beyond the scope
of this paper. It can be found in [19].Therefore, only the commented building
blocks of the denotational semantics and syntax will be given. Syntactic domains:

n : Num (numerals)
V + : Lang (language)
x : variable names
a : Aexp (arithmetic expressions)
b : Bexp (boolean expressions)

Str : structures
SAtr : structure attributes
AV al : attribute values

S : statements
D : declarations

Sets definition:

digit ::= 0 | 1 | . . . | 8 | 9
numeral ::= < digit > | < digit >< numeral >

integers ::= Z = {. . . ,−2,−1, 0, 1, 2, . . .}
V = {A,B, . . . , Z, a, b, . . . , z}
N = {1, 2, 3, 4, . . .}
W = {an}ni=1 ∀aiεV

V ∗ = {wj}mj=1

e . . . empty word

V + = V ∗\{e}
x ε V +\{Str}\{SAtr}\{Aval}\n
B = {true, false}

Str = {Meth, Init, Block, Class, . . .}
SAtr = {Name,Lenght,Rest, V al, . . .}
AV al = {public, private, . . .}
AV al ⊆ V ∗

4

AV al ⊆ Num

The first few sets are similar to usual definitions. Therefore, a comment is not
needed. The interesting domain is “Str”. This domain specifies the structural
keywords. It is the set of words, starting with a capital letter, which corresponds
to every source code structure in Java. For example, Meth, Init, Block, Stmt
correspond to a method, a variable initialization, a block of code, and a statement
in the same order. The next domain “SAtr” contains the structure attributes.
The Java code structure can have a lot of attributes. For example, an attribute,
or a method can have a scope, a variable can have a name and type, and so on.
Therefore, an examples of the set “SAtr” could be: Scope, ParamType, Type,
etc. The last interesting set is AVal. This set contains the values of the structure
attributes. The typical values for a scope are “public”, “private” and “protected”.
On the other hand, this set can contain even other text values. Most often, these
values are the names of the methods, variables and its values. The usage in a
program can look like this:

Init(Name=increment)

It means that a variable is initialized (Str) with an attribute “Name” (SAtr),
and the value of the attribute is “increment” (AVal). All three sets are linked
with a dependency graph. This graph determines which specific structures are
able to use. Moreover, it determines the structure attributes and its values.
While compiling, the source code is check if it complies the requirements of the
dependency graph. However, in fact, the dependency graph is much larger, a
small example as follows: The Scripthon compiler is written in Java and does

Obrázek 1. Dependency graph

not pass all the phases of the compilation process. If the compilation would be

5

complete, the last stage of the process were the instructions in the form of a
byte code for a language interpret. In this case, however, the compilation ends
with an AST. The next steps are not necessary, because an AST is used in the
matching phase. The phases of the Scripthon compiler are as follows:

– Tokenization: The particular text elements (including spaces and spacing)
are divided into the so called tokens here. The tokens are buckets which
contain significant text elements for translation.

– Syntax checking: The next step is the syntax control. In this step, all tokens
are checked whether its content can be interpreted, and if its sequence is
correct.

– Blocks of command dividing: Thanks to the given dividers, the tokens se-
quences can by divided into the semantic units called statements.

– Semantic analysis: In this step, it is checked whether the sequence of the
nested statements or the consecutive statements corresponds to the given
semantics.

– Creation of an AST: The last stage is creation of an AST from the particular
statements.

3.1 Complete flow

This paper deals with a programmable searching of a Java source code. It differs
from a common textual searching or a searching with regular expressions by the
ability of describing even a structure of a source code and its properties. Within
this work, a new programming language named Scripthon, and capable of this
properties, was developed. With help of this language, it is possible to describe
a code structure with properties, and it is even possible to change the properties
of the searching sample in dependence of properties of the searched segment.
An abstract syntax tree, which corresponds to a given description, is built from
this language, and is compared with syntax trees created from a given Java
source code. Basically, in the end, it is the application of a sub-graph matching
algorithm where many optimization tools take place. Results of the described
process are the references to a given original Java source code.

4 Optimizations

While browsing a Java source code, the tree with the nodes enhanced by four
numbers is created. These numbers are the natural numbers named left, right,
level and level under. The first and the second number (left, right) denote the
order index of a node in the tree preorder traversal. Therefore, an ancestor’s left
index is always smaller than its children left index, while the right index is always
bigger than any children’s right index. The level number denotes the level in a
tree hierarchy of vertices, and the level under number denotes a number of levels
under the current node (compare with the method described in [14]). Suppose
that x and y are two nodes from a tree.

6

Obrázek 2. Scripthon chart

– The y node is an ancestor of x and x is a descendant of y if y.left < x.left < y.right

– The y node is an parent of x and x is a child of y if 1) y.left < x.left < y.righ
and 2) y.level = x.level− 1

All these data are acquired during a single pass through the tree. Obtaining this
information is not a time consuming operation, because it is made during the
tree production process. On the other hand, the number of comparisons can be
significantly reduced with these numbers. Moreover, while comparing the trees,
it is very easy to detect:

– How many elements have a given structure
– Whether a node is a leaf
– How many sub-statements are included in a given structure

The comparison of two trees is much more time consuming without this infor-
mation. In summary, this information is used in cases where the shape of the
given structures and its coupling is considered more than its properties.
A line reference to the source code is important information which is also added
to the tree as a metadata. Therefore, it is easy to link the results with the original
source position and show it to the user. There are some more elements in a node
metadata. For example, some of the other metadata information is a filename of
the source file.
Because the number of the comparisons is a key indicator for the algorithm speed,
it is necessary to keep the number of nodes as small as possible. Therefore, only
the supported structures and its properties are considered while creating a tree
from the source code. Thus, the same Scripthon definition set is used during the
tree creation process. Other elements are omitted.

7

5 Tree matching

The simple and many times described backtracking algorithm is used for the
graph matching. Basically, it is the problem of finding an isomorphic tree to the
given tree from a large database of trees. Comparing to the common tree match-
ing, there are two differences. The first one is that the node properties need to be
considered during the process. The second difference is that not every Scripthon
node corresponds exactly to one Java structure node. For example, the already
mentioned keyword Any() could correspond to more nodes.
The source trees are created from the corresponding classes. The classes and
the trees are mapped one-by-one. Each tree corresponds to exactly one class. In
the first step, the algorithm checks whether the shape of the structure match,
and then the properties are compared. This is because the properties matching
is much more time consuming operation than shape detection. Many structures
are eliminated very quickly from the process in the case that the shape does not
fit. If the shape of the structure corresponds to the required shape, the structure
parameters are compared. All the parameters of a given node must be met. The
node properties are provided by the Java compiler.
Many aspects are considered during properties matching process. Not only key-
words and Java nodes properties are considered. According to the previous sec-
tion, it is possible to exclude quickly the mismatched parts, because some addi-
tional data are known about a shape of the sub-tree.
The typical size of a class graph depends on the source size and on the number
of supported structures. About 80 nodes of the graph are created from a Java
class with length about 200 lines nodes in the current version of Scripthon. In
future versions, when more structures will be supported, may the number of the
nodes significantly increase.
Unfortunately, because all the Java classes with all their nodes must be compared
with all the Scripthon statements, the number of complexity rapidly grows. Ac-
cording to [15], the sub-graph isomorphism problem has O(N3) complexity in
worst case. Since the number of occurrences can be more than one, each class
must be browsed more than once. Each class needs to be traversed until the
number of results is 0. According to [16], [17], the graph isomorphism problem
is polynomial. Therefore, even in this case, the complexity of our algorithm re-
mains polynomial. On the other hand, with the above outlined optimizations,
the number of node comparisons is significantly decreased. More on the similar
graph matching techniques can be found in [18].

6 Current Work and Preliminary Results

The described way of scanning a source code is very effective. Thanks to the
mentioned optimizations, it was achieved a significant acceleration of the whole
process. In the initial attempts without optimization where the method one-
by-one was used, the results were not satisfying. The tests were performed on
the various kinds of programs with hundreds of classes. The first results were

8

fluctuating around tens of seconds. With the current optimization implementa-
tion, the performance of the searching algorithm applied on the same programs
moved to up to units of seconds. The accurate results are difficult to measure,
because each program is different, and it depends on the number of hits. How-
ever, it can be said that a big improvement can be seen. This is because the
fact that thanks to additional information, it is possible to exclude high number
of the non-matching sub-trees, and the significant number comparisons can be
saved. Roughly speaking, the searching process is transformed into the exclusion
method: exclude as quick as possible as many non-matching results.

Reference

[1] Irniger, Ch-A. M.: Graph Matching - Filtering Databases of Graphs Using Machine
Learning Techniques. ISBN 1-58603-557-6. 2005.

[2] McKay, B.D.: Practical graph isomorphism. In Congressus Numerantium. volume
30, pages 45-87, 1981.

[3] Ullmann,J.R.: An algorithm for subgraph isomorphism. Journal of the Association
for Computing Machinery, pages 31-42, 1976.

[4] Levi, G.: A note on the derivation of maximal common subgraphs oftwo directed
or undirected graphs. Calcolo, page 341-354, 1972.

[5] McGregor, J.: Backtrack search algorithms and the maximal common subgraph
problem. Software-Practice and Experience, pages 23-34, 1982.

[6] Krishnamurthi, S.: Programming Languages: Application and Interpretation. Cre-
ative Commons Attribution-NonCommercial-ShareAlike 3.0 United States License
Version, 2007.

[7] Pierce, B. C.: Types and Programming Languages. The MIT Press, Massachusetts
Institute of Technology, Cambridge, Massachusetts, ISBN 0-262-16209-1

[8] Grune, D., Jacobs, C. J. H.: Parsing TechniquesSecond Edition. VU University
Amsterdam, Amsterdam, The Netherlands Published by Springer US, ISBN 978-1-
4419-1901-4, 2008.

[9] Steedman M.: The Syntactic Process. MIT Press, 2000.
[10] Selinger P.: Lecture Notes on the Lambda Calculus. MIT Press, 2000.
[11] Kalleberg K. T., Visser E.: Fusing a Transformation Language with an Open

Compiler. Report TUD-SERG, ISSN 1872-5392, 2007.
[12] Cordy J. R.: TXL - a language for programming language tools and applications.

ENTCS, pages 3-31, 2004.
[13] Chlipala A.: A Certifed Type-Preserving Compiler from Lambda Calculus to As-

sembly Language. University of California, Berkeley, 2007.
[14] Yao, J. T., Zhang, M.: A Fast Tree Pattern Matching Algorithm for XML Query.

In Proceedings of the 2004 IEEE/WIC/ACM International Conference on Web In-
telligence (WI ’04). IEEE Computer Society, Washington, DC, USA, pages 235-241,
2004.

[15] Baxter, I. D., Yahin, A., Moura, L., Sant’Anna, M., Bier, L.: Clone Detection
Using Abstract Syntax Trees. In Proceedings of the International Conference on
Software Maintenance (ICSM ’98). IEEE Computer Society, Washington, DC, USA,
pages 368-377, 1998.

[16] Kbler, J., Torn, J.: The Complexity of Graph Isomorphism for Colored Graphs
with Color Classes of Size 2 and 3. In Proceedings of the 19th Annual Symposium
on Theoretical Aspects of Computer Science (STACS ’02), Helmut Alt and Afonso
Ferreira (Eds.). Springer-Verlag, London, UK, UK, pages 121-132, 2002.

9

[17] Filotti, I. S., Mayer, J. N.: A polynomial-time algorithm for determining the iso-
morphism of graphs of fixed genus. In Proceedings of the twelfth annual ACM sym-
posium on Theory of computing (STOC ’80). ACM, New York, NY, USA, pages
236-243, 1980.

[18] Bunke, H., Irniger, Ch., Neuhaus, M.: Graph matching - challenges and potential
solutions. In Proceedings of the 13th international conference on Image Analysis
and Processing (ICIAP’05), Fabio Roli and Sergio Vitulano (Eds.). Springer-Verlag,
Berlin, Heidelberg, pages 1-10, 2005.

[19] Bubĺık, T., Virius, M.: New language for searching Java code snippets. In ITAT
2012. Proc. of the 12th national conference ITAT. Ždiar, Pavol Jozef Šafárik Univer-
sity in Košice, pages p. 35-40, 2012.

Parallel Programming with NVIDIA CUDA

Vladimir Spanihel1

Czech Technical University, Prague 110 00, CZE,
vladimir.spanihel@seznam.cz

Abstract. This paper sumarizes elementary knowledge about NVIDIA
CUDA programming. It brings description of basic terms nearly related
to GPU programming and an introduction to architecture of NVIDIA
GPUs.

1 Introduction

Nowadays, many people are concerning with HPC (High Performance Comput-
ing). Their common goal is to get the highest possible throughput of applications
solving their issues. In most cases, parallel programming is used to achieve good
results within a small amount of time. Since todays computers are powered by
multi-core CPUs, the CPU parallelization of tasks is widely used. However, so-
lutions of a relatively big amount of these tasks are composed of a sequence
of simple operations applied on a huge input data set. Thanks to developers
from NVIDIA, there is an alternative to the CPU computing, which can dra-
matically increase performance of the computations. Before a few years, their
effort resulted in the CUDA architecture. It allows concurrently perform simple
computations on many-core GPUs. This paper is aimed at an introduction to
CUDA programming. It describes HW architecture of Fermi cards, GPU occu-
pancy calculation, application interfaces and useful tools and libraries used for
GPU programming.

1.1 Basic Terminology

It is importat be familiar with basic terminology of CUDA programming. Kernel,
thread and warp are the most frequently used terms. The term kernel denotes
a method to be invoked on GPU. The CUDA thread is the name for one data
element processed by a kernel. Due to hardware restrictions, threads can be
processed in groups of 32 threads called warps.

The next common words are host and device which are used for distinguishing
between CPU (host) and GPU (device) parts of code, memories etc.. The rest
of terms will be explained further.

1.2 CUDA Compute Capability and SDK

NVIDIA uses so-called compute capability to differentiate GPU architectures
with various capabilities. Compute capability is a number comosed of major

and minor part e.g. 2.1. Here major is equal to 2 and minor equals to 1. The
major part defines hardware architecture of NVIDIA GPUs. All till now released
architectures named Tesla, Fermi and Kepler have major numbers 1, 2 and 3
respectively. As NVIDIA has already published, Maxwell and Volta are names
for next two generations of CUDA capable cards. Besides NVIDIA graphics
card, CUDA Toolkit is necessary for writing applications computing on GPU. It
consists of various tools such CUDA compiler nvcc, debuger cuda-gdb and useful
IDE Nsight. CUDA Toolkit 5.0 is the latest stable release, however, version 5.5
RC is now prepared.

2 Chip architectures

Since GPUs are designed to simultanously process graphics data and display
it on screen, architecture of GPUs is massively parallel. The field of GPU pro-
gramming was established to take advantage the parallel architecture of graphics
cards.

The architecture of all GPUs is based on cooperation of many simple cores.
These cores are suitable to peroform one instruction on huge data set in par-
allel. Because of the fact, GPUs could be marked as SIMD (Single Instruction
Multiple Data) in the Flynns taxonomy (see Table 1). Some people classify this
architecture as SIMT (Single Instruction Multiple Threads).

Table 1. Flynn’s taxonomy

Single Instruction Multiple Instruction

Single Data SISD MISD

Multiple Data SIMD MIMD

While GPU processors are very simple compared to CPUs, their production
is much cheaper. So that, a GPU card containing hundreds of CUDA cores costs
a fraction of the price of CPU with tens of cores. GPUs was designed to quickly
process many graphics data.

The first version of NVIDIA CUDA was announced in 2006. (see [1]). NVIDIA
made many improvements resulting in very useful Fermi architecture.

2.1 Fermi

The Fermi chip can be composed of one or more streaming multiprocessors.
One streaming multiprocessor (SMP) contains computing units called streaming
processors (SP) and special function units (SFU). Although both SP and SFU
computes in single precision, their roles are separated. Each SP does simple
mathematics operation, whereas, SFUs performs calculations of more complex
operations e.g. trigonometric functions and multiplication. Double precision on
Fermi and later architectures is achieved by coopereation of two cores (SPs).

This is the reason why calculations in signle precision are about a half faster
than computing in double precision on Fermi GPU.

Nowadays, newest GPUs originate from Kepler series. The architecture of
such cards is not very different from Fermi. More about CUDA achitectures can
be read in [2].

2.2 CUDA Execution model

An execution of each kernel starts certain number of threads. These threads
are organized into so-called blocks and blocks into a grid. The thread hier-
archy is depicted in Figure 1. Grid and blocks can be up to 3-dimensional.
Its particular dimension size has to be specified before invoking the kernel
in code. For this purpose, tripple angle brakets with execution specification
<<<blockDim, gridDim>>> must be used while calling the kernel. Variables
blockDim and gridDim can be of type int for one dimensional blocks and grid
or of type dim3 to specify higher dimensionality of blocks and grid. Here is an
example of kernel invocation:

kernelName<<<10, 128>>>(param1, param2);

Related to the compute capability of GPU, there are one, two or four warp
schedulers, reponsible for distribution of warps on streaming multiprocessors,
on GPUs. Warps are processed on SMs independently. Whole warp executes
same instruction. Therefore, the best throughput is achieved when all threads
can work. When threads of a warp start diverging, according to data-dependent
conditionals, processing of each branch is serialized. This phenomenon is called
warp divergence.

3 Available Memory Types

The working CUDA code can be simply written using just global device memory
which is readable and writable from each thread. However, CUDA developers
can take advantage of several memory types, available on NVIDIA GPUs, to
increase their application performance.

3.1 Global Memory

The most common attribute of graphics cards, presented by IT shops, is the size
of global memory. Since GPU can not directly access host memory, all required
data has to be copied in GPU memory. Such data transfers can be very time
consuming parts of code, so that, their count should be minimized. Situation,
when whole solved issue is not greater than the global memory of card used to
solve the problem, is perfect.

Even though, an access rate to the global memory reaches up to 28 GB/s,
this memory type is the slowes one relative to the other types. So utilizing of
the other memory types may significantly speed-up the application.

Block[0,0] Block[0,1] Block[0,2] Block[0,3]

Block[1,0] Block[1,1] Block[1,2] Block[1,3]

Grid

Block[1,2]
Thread[0,0] Thread[0,1] Thread[0,2] Thread[0,3] Thread[0,4] Thread[0,5]

Thread[1,0] Thread[1,1] Thread[1,2] Thread[1,3] Thread[1,4] Thread[1,5]

Thread[2,0] Thread[2,1] Thread[2,2] Thread[2,3] Thread[2,4] Thread[2,5]

Device

Global memory

Shared
memory

Shared
memory

Shared
memory

Shared
memory

Shared
memory

Shared
memory

Shared
memory

Shared
memory

Shared memory

R
e
g
i
s
t
e
r

R
e
g
i
s
t
e
r

R
e
g
i
s
t
e
r

R
e
g
i
s
t
e
r

R
e
g
i
s
t
e
r

R
e
g
i
s
t
e
r

R
e
g
i
s
t
e
r

R
e
g
i
s
t
e
r

R
e
g
i
s
t
e
r

R
e
g
i
s
t
e
r

R
e
g
i
s
t
e
r

R
e
g
i
s
t
e
r

R
e
g
i
s
t
e
r

R
e
g
i
s
t
e
r

R
e
g
i
s
t
e
r

R
e
g
i
s
t
e
r

R
e
g
i
s
t
e
r

R
e
g
i
s
t
e
r

Fig. 1. Threads hierarchy example

3.2 Private Memory

Besides thread hierarchy, Figure 1 illustrates GPU memory hierarchy. As can be
seen from the figure, each thread has its own private memory called register. It
contains e.g. build-in variables important for unique identification of each thread.
Data stored within this memory can be read just from the corresponding thread.
Examples of such variables can be found in Table 2.

Table 2. Examples of build in variables stored in private memory of each thread

threadIdx.x index of the thread within the coordinate x of the block

threadIdx.y index of the thread within the coordinate y of the block

blockIdx.x index of the block within the coordinate x of the grid

blockIdx.y index of the block within the coordinate y of the grid

blockDim.x dimension of the blocks coordinate x

gridDim.y dimension of the grids coordinate y

3.3 Other Memory types

Shared memory is available from all threads located within one block and pro-
vides both read and write access.

Constant and texture memories are parts of the global memory. Both are
accessible from each thread.

3.4 Variable Declaration

CUDA provides qualifiers to specify memory where a variable will be created.
There are available these qualifiers __device__, __shared__, __constant__ in
the CUDA API. Declaration of variable i in the shared memory looks like:

__shared__ int i;

4 NVCC Compiler

CUDA C language brings some extensions to the C language. Tripple angle
brackets or variable type qualifiers mentioned above are not allowed by C stan-
dard [3]. Due to this fact, standard C compilers can not be used for building
CUDA source code. So NVIDIA wrapped standard C compiler to accept CUDA
extensions. The new compiler has name NVCC. Running NVCC compiler ac-
cepts the same parameters as C/C++ compiler.

Ussually, source code containing device code is stored in file with extension
.cu.

5 Useful Tools and Libraries

As time passed, various libraries and tools was added into CUDA SDK. The
installation includes the NVCC compiler [4], Nsight (IDE) [5] and profiler tool
[6].

Probably the most famous libraries from the package are CUBLAS [7] and
CUSPARSE [8]. The CUBLAS library solves basic tasks from linear algebra in
parallel on GPU. The CUSPARE library performs parallel algorithms on sparse
matrices.

6 Acknowledgement

This work is supported from grant SGS11/167/OHK4/3T/14 and GA TA CR
TA01010490.

References

1. NVIDIA: What is CUDA. [ONLINE] [cit. 2013-07-20]
URL: https://developer.nvidia.com/what-cuda

2. NVIDIA: CUDA C Programming Guide. [ONLINE] [cit. 2013-07-20]
URL: http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

3. The Standard - C. [ONLINE] [cit. 2013-07-20]
URL: http://www.iso-9899.info/wiki/The Standard

4. NVIDIA: CUDA COMPILER v5.0. October 2012
5. NVIDIA: NSIGHT ECLIPSE DG-06450-001 v5.0. October 2012
6. NVIDA: PROFILER DU-05982-001 v5.0. October 2012
7. NVIDIA: CUBLAS LIBRARY v5.0. October 2012
8. NVIDIA: CUSPARSE LIBRARY v5.0. October 2012

Economic Time Series as Objects and Principal
Component Analysis

Radek Hřeb́ık

Czech Technical University Faculty of Nuclear Sciences and Physical Engineering,
Department of software engineering, Břehová 7,

115 19 Prague, Czech Republic
Radek.Hrebik@seznam.cz

Abstract. Paper deals with principal component analysis in sphere of
economic data. The aim is not to deal primary with principal component
analysis but to show the possible way of use in interpreting economic in-
dicators. As it is well known principal component analysis reduce the
dimensionality of origin data set, the input for this research is very sim-
ple, statistic data describing the economic situation of more than thirty
states during twenty two years. Paper presents three basic ways of inter-
preting these data as input to principal component analysis and shows
the results.

1 Introduction

The contribution is focused on principal component analysis (PCA). The aim is
not to describe the principal component analysis itself in detail. The main idea
of principal component analysis is reduction of dimensionality of some data set
that consists of a large number of interrelated variables. The reduction retains
as much as possible of the variation present in the data set. The aim is achieved
by transforming to a new set of variables called the principal components. These
principal components are uncorrelated and ordered so that the first few retain
most of the variation present in all of the original variables. [2] In this research
is the aim the reduction to two principal components (PC1 and PC2).

Paper deals with the basic economic data and shows the ways of possible
interpretation to serve as input for principal component analysis. The aim is
to search the main indicators, monitor the potential trend of concrete objects
and finding objects having something in common. It goes hand in hand with
principal component analysis goal defined by Abdi and Williams – extracting the
important information from the table to represent it as a set of new orthogonal
variables called principal components and to display the pattern of similarity of
the observations and of the variables as points in maps. [1]

Paper presents three basic ways of using principal component analysis to
interpret economic data. The way means to interpret the data set as objects.
As the reason for doing such research can be also trying to predict the future
development of some country and find the position of state if we know the basic

economic prediction. There is also very interesting to capture some progress in
time.

The study dealing with principal component analysis to forecast a single
time series with many predictors was presented by Stock and Watson. [4] The
use of principal component analysis in connection with gross domestic product
is discussed for example in [5]. Favero deals with comparison of two competing
methods to estimate large-scale dynamic factor models based, respectively, on
static and dynamic principal components. [6] Principal component analysis as
alternative way to predict gross domestic product is presented in [7].

1.1 Used data

To do such research play the key role the input data set. As already said it
should be some economic time series. Used economic data has been selected from
Statistical Annex of European Economy presented by European Commission in
spring 2013. [3]

As input to analysis serve the thirty five countries from the whole world,
majority are the European countries. The observation take place in years 1993
to 2014. Selected indicators are the total population, unemployment rate, gross
domestic product at current market prices, private final consumption expendi-
ture at current prices, gross fixed capital formation at current prices, domestic
demand including stocks, exports of goods and services, imports of goods and
services and gross national saving. So totally nine indicators are monitored. As
the time series go to year 2014 it is clear that years 2013 and 2014 represent
predictions.

2 State in year as object

As first possible interpretation of the data set is the object represented by a state
in a given year. So the number of objects is relatively high. The total number
of object is in this case seven hundred and eighty, it represents number of states
multiplied by the number of observed years.

As the number of object is high, the origin data set dimensionality is relatively
small. It is created just by nine indicators. The result of principal component
analysis is that two principal components are created mainly by combination of
population and gross domestic product as shown the indicators weights in table
1.

The figure 1 shows that main points are concentrated by vertical axis. As
representative state of vertical line can be selected for example Germany. As
the state represented by movement also in horizontal line can be mentioned
for example France. Because the number of objects is quite high, for better
interpretation there are the objects grouped by the same colour for a given
year in figure 2. The weights of components are in table 1. The first principal
component explains almost all of the variance.

Table 1. PCA – State in Year as Object

Indicator PC1 PC2

Total population -1,106 1,683

Unemployment rate -0,000 0,025

Gross domestic product -0,113 -16,492

Private final consumption expenditure -0,000 0,013

Gross fixed capital formation 0,000 -0,021

Domestic demand including stocks -0,000 0,004

Exports of goods and services -0,000 -0,062

Imports of goods and services -0,000 -0,060

Gross national saving 0,000 -0,026

Fig. 1. PCA – State in Year as Object

Fig. 2. PCA – State in Year as Object with legend

The detailed view on values of principal components for three selected coun-
tries is shown in table 2. As already mentioned Germany is represented by points
in vertical line as can be seen in figure 3.

Fig. 3. PCA – State in Year as Object – Germany

In case of France there is the result of principal component analysis shown in
figure 4 from which is evident that growing gross domestic product is connected
with growing population. So in this case the growing gross domestic product goes
hand in hand with growing population. That is the different between France and

Table 2. Values of principal components of selected countries

Year CZ - PC1 CZ - PC2 DE - PC1 DE - PC2 FR - PC1 FR - PC2

1993 0,0067 0,2861 0,2827 1,9173 1,0522 0,7847

1994 0,0050 0,2647 0,2052 1,5870 0,9852 0,6696

1995 0,0063 0,2370 0,1282 1,1589 0,9195 0,5430

1996 0,0110 0,1980 0,0564 1,3097 0,8555 0,4740

1997 0,0144 0,1865 0,0091 1,4556 0,7919 0,4969

1998 0,0170 0,1607 0,0148 1,2527 0,7238 0,3324

1999 0,0206 0,1501 -0,0047 1,0328 0,6289 0,2273

2000 0,0235 0,1200 -0,0371 0,8603 0,5009 0,0847

2001 0,0383 0,0600 -0,0854 0,6842 0,3648 0,0330

2002 0,0450 -0,0031 -0,1299 0,6133 0,2278 0,0244

2003 0,0446 -0,0073 -0,1421 0,5579 0,0936 0,0207

2004 0,0429 -0,0389 -0,1377 0,3294 -0,0474 -0,0789

2005 0,0342 -0,0848 -0,1273 0,1840 -0,1925 -0,1445

2006 0,0236 -0,1322 -0,1000 -0,2735 -0,3284 -0,3074

2007 0,0060 -0,1683 -0,0720 -0,8476 -0,4502 -0,5334

2008 -0,0275 -0,2207 -0,0296 -1,1202 -0,5596 -0,5795

2009 -0,0458 -0,1366 0,0486 -0,7816 -0,6633 -0,2043

2010 -0,0540 -0,1618 0,0810 -1,3902 -0,7716 -0,2752

2011 -0,0481 -0,1983 0,0712 -1,8237 -0,8814 -0,3854

2012 -0,0523 -0,1764 0,0276 -1,9930 -0,9842 -0,3722

2013 -0,0549 -0,1612 -0,0166 -2,1568 -1,0835 -0,3459

2014 -0,0566 -0,1736 -0,0425 -2,5564 -1,1822 -0,4637

Germany, where the gross domestic product is growing in conditions of almost
the same population.

Fig. 4. PCA – State in Year as Object – France

The example of Czech Republic shows that the population is almost constant
as in case of Germany, but the potential to grow the gross domestic product is
much smaller. The differences between years are very small.

3 States as objects

In second case of possible use of principal component analysis there are the
object represented by each state. So the properties are made of indicators in
selected years. The number of object is thirty five.

In comparison to first case of use the number of objects is dramatically
fallen down. So the representation will be very simple and it will be clear which
states are closed to each other. From graphic representation are easily noticed
the groups of states. When one point represent one state there is very easily
seen the groups of states with similar type of economy. The result of principal
component analysis is shown in figure 6. The first principal component explains
almost ninety nine percent of variance in origin data set. The values of principal
components of each state are summarized in table 3.

The principal components are in this case counted from nearly two hundred
indicators. So the reduction of dimensionality is high in this case. These values
are created by the nine economy indicators in twenty two years. As in the first
case of using principal component analysis also here are the biggest weights on
gross domestic product and population. In case of first principal component is
the population values included with bigger weight than in case of gross domestic

Table 3. PCA – States as objects

State PCA 1 PCA 2

Belgium 0,195 0,376

Germany 0,258 -0,115

Estonia 0,317 0,090

Ireland 0,179 0,044

Greece 0,223 -0,118

Spain -0,547 -0,509

France -0,443 0,558

Italy -0,202 1,178

Cyprus 0,279 0,075

Luxembourg 0,290 0,061

Malta 0,299 0,020

Netherlands 0,148 0,089

Austria 0,239 0,141

Portugal 0,230 -0,205

Slovenia 0,296 0,062

Slovakia 0,296 0,047

Finland 0,267 0,129

Bulgaria 0,431 -0,001

Czech Republic 0,280 0,240

Denmark 0,262 0,090

Latvia 0,356 0,022

Lithuania 0,377 -0,032

Hungary 0,347 0,067

Poland 0,279 0,388

Romania 0,468 0,333

Sweden 0,219 0,361

United Kingdom -0,318 1,921

France 0,324 0,118

F.Y.R. of Macedonia 0,294 0,016

Iceland 0,297 0,022

Turkey -1,189 -4,953

Montenegro 0,304 0,021

Serbia 0,322 -0,169

United States -5,431 1,033

Japan 0,056 -1,400

Fig. 5. PCA – State in Year as Object – Czech Republic

product. Second principal component is preferring the values of gross domestic
product in years.

The values of first principal component are in most cases very close to zero,
following the weights that implies that the population is without big changes hav-
ing affect to component values. Second principal component is mostly counted
from gross domestic product values. There also apparent the bigger range in
values.

Fig. 6. PCA – States as objects

4 Years as objects

The third kind of data interpretation is by objects representing calendar year.
So there is only twenty four objects in this case. As the number of objects
is decreasing, the number of properties of each object is increasing. The total
number of indicators of each object is created by number of countries mal number
of describing properties. The number of properties is totally over three hundreds.
The result showing principal component values is shown in figure 7. The first
principal component explains almost ninety nine percent of variance in origin
data set.

Fig. 7. PCA – Years as objects

The advantages of such approach is the very clearly seen the progress in time.
The next possible use of this approach is to do the analysis just for national
data and see the development of separate country. Example of Czech Republic
is shown in figure 8. In this case explains the first principal component almost
ninety three percent of variance in origin data set. Both principal components
explain almost all variance in origin data set.

5 Summary

It was shown that principal component analysis can be also very useful in in-
terpreting the economic data. It represents some other way of interpreting time
series and shows how the states position in comparison to others. To fully in-
terpret the results there is need to study the weights of principal components
to know what stands behind the components values. The third case of use – the
years as objects – gives very clear representation of changing economic situation.

Fig. 8. PCA – Years as objects – Czech Republic

References

1. H. Abdi and L. J. Williams. Principal Component Analysis. (2010). [online]. [cited
2012-08-21]. http://www.utdallas.edu/~herve/abdi-awPCA2010.pdf.

2. I. T. Jolliffe. Principal Component Analysis – 2nd Ed.. Springer (2002).
3. European Comission. Statistical Annex of European Economy: Spring

2013. Economic and Financial Affairs (2013). [online]. [cited 2012-08-21].
http://ec.europa.eu/economy_finance/publications/european_economy/

2013/pdf/2013_05_03_stat_annex_en.pdf.
4. J. H. Stock and M. W. Watson. Forecasting using principal components from a large

number of predictors Journal of the American Statistical Association, Vol. 97, No.
460, p. 1167-1179. (2002).

5. C. Schumacher. Forecasting German GDP using alternative factor models based on
large datasets. Bundesbank Discussion Paper 24/2005. (2005).

6. C. Favero, M. Marcellino, F. Neglia. Principal components at work: The empirical
analysis of monetary policy with large datasets. Journal of Applied Econometrics,
20, p. 603–620. (2005).

7. G. Chamberlin. Forecasting GDP using external data sources. Economic and Labour
Market Review vol. 1(8), August 2007, p. 18-23. (2007).

http://www.utdallas.edu/~herve/abdi-awPCA2010.pdf
http://ec.europa.eu/economy_finance/publications/european_economy/2013/pdf/2013_05_03_stat_annex_en.pdf
http://ec.europa.eu/economy_finance/publications/european_economy/2013/pdf/2013_05_03_stat_annex_en.pdf

adfa, p. 1, 2011.

© Springer-Verlag Berlin Heidelberg 2011

Model-Driven Development of a Banking Multichannel

Solution

Petr C. Smolik

Metada s.r.o., Prague, Czech Republic

petr.smolik@metada.com

Abstract. Development of large information systems requires large amount of

knowledge gathering. In order to implement the needed functionalities, many

things need to be understood and figured out. Conventionally, this knowledge

gets encoded deeply into the program code and when technologies are replaced

the knowledge goes away with them. We present experience from a project in

banking where large multichannel solution was built based on model-driven en-

gineering techniques. Metamodel of the solution was created and all business-

relevant aspects of the solution were modeled in a modeling environment sup-

porting parallel development and versioning. In the runtime, models are being

executed by a model interpreter. It is now possible to inspect the system func-

tionalities on a higher level of abstraction and the organization has the added

flexibility to replace the runtime technologies as needed without losing the ex-

pensively gathered knowledge.

Keywords: model-driven engineering, model interpretation, multichannel solu-

tion, software product lines, FSPL

1 Introduction

Banking is a software-intensive industry where large information systems need to be

used to support various financial products and services. Historically, because of easier

management, banks operated with separate vertical divisions for different types of

products (e.g. accounts, mortgages, loans, cards). Each division built its own support

systems and often even held its own client data associated to its own product infor-

mation. This way banks ended-up with several core backend systems and dispersed

customer data. Nevertheless, with advances of information technologies, especially

web and mobile technologies, financial services are forced to become more customer-

centric. Banks need to have one place with customer data, so called “single view of

customer”, and need to serve customers uniformly over all different types of products

and communication channels. For this reason banks are building “multichannel” solu-

tions where one system integrates all interactions of a customer with the bank. Cur-

rently the channels may include internet banking, mobile banking, telephone banking,

ATMs, social media, or branch banking.

Multichannel solutions as information systems cover three important areas:

frontends, business logic, and integration. Frontend is the presentation layer via which

users directly interact with the system. Integration ensures that the multichannel solu-

tion communicates with all the numerous existing backend systems within the bank.

The business logic within multichannel solutions takes care of all processing that is

not implemented within existing backend systems.

A multichannel solution development project may take several years and may in-

clude over a hundred of people involved. Most of the work is about trying to under-

stand all the details of different products and processes. The knowhow is then encod-

ed into a form executable by computers. Conventionally developers write code in a

specific general purpose programming language (like Java) as part of some applica-

tion development framework. A multichannel solution may be composed of few rela-

tively simple concepts, mainly operations and forms. The problem is the scale, be-

cause relatively simple solution may include several hundred up to few thousand

forms and operations. Another problem is that most of the solution is user-facing. The

advances of user interface technologies in the past decade were immense. Banks need

to keep up with these advances and have to be able to update technologies as new

ones become mainstream.

We have seen cases where banks had to throw away their old multichannel solution

and create a new one just to keep up with technologies. The worst thing was that they

threw away not only the old technology but also their expensive knowhow that was

encoded into it. This is exactly where Model-Driven Engineering (MDE) can come to

the rescue. The only thing that needs to be done is to encode the knowhow in an exe-

cutable model that is not implementation dependent, and enable code generation or

model interpretation within the multichannel solution.

The following sections describe how a particular multichannel solution was created

using model-driven techniques. The section on Domain Engineering is focused on the

architecture, metamodel, framework, and tooling used as foundation used for building

the solution. The section on Application Engineering discusses how the solution was

modeled, how channel applications were created. Some details about the development

process are discussed in the Discussion and Parallel Development sections. The terms

domain and application engineering were borrowed from the area of Software Product

Lines (SPLs) [1], because they nicely express the two main streams of activities when

designing a model-driven solution. There seems to be a natural relation between soft-

ware product line engineering and model-driven engineering, which is also supported

by [2].

2 Domain Engineering

The domain of multichannel solutions is concerned with client interactions over dif-

ferent communication channels. It includes various presentations of relatively similar

functionalities, some common business logic, and a lot of integration to many existing

systems. Using model-driven engineering, all this essential information needs to be

expressed in a model.

Metarepository

Metamodelers

Multichannel Runtime

IBR
Channel

Application

CC
Channel

Application

Mobile
Channel

Application

Model Interpreter
Metamodel

Domain Engineering

Application Engineering
ModelersMultichannel Model

Component

Operation

*

Application*

Define Develop

Interpreted by

Stored in

Stored in

Model Develop

Application
Developers

Interpreter
Developers

Fig. 1. Overview of components, objects, processes, actors, and their relations

Fig. 1 shows the overall architecture of the model-driven approach used. Models and

metamodels are stored in the Metarepository, a metamodeling tool that allows web-

based access to both modelers and metamodelers. The Multichannel Runtime is com-

posed of various channel applications and models are fully interpreted by the Model

Interpreter. The following subsections describe these components and objects, and

explain their relation to development processes and actors.

2.1 Metamodel

In the beginning we had an ambition to create a “Financial Services Product Line”

(FSPL) for fast configuration of banking products. Nevertheless, that would require

replacing also the product backends, which was not in the scope of the multichannel

solution. Therefore we had to settle down with modeling not the banking domain

itself, but just the multichannel solution domain. This section will briefly describe this

multichannel solutions domain. Generally there are channel applications composed of

various frontend and business components. Each component offers some operations

as shown on Fig. 2.

Component Operation
Channel

Application

**

Fig. 2. Channel applications composed of components and operations

Channel applications thus may be assembled from several reusable components. Op-

erations are the only thing exposed by components and may have several types as

shown on Fig. 3.

Operation

Frontend
Operation

Composite
Operation

Consumer
Operation

Integration
Operation

Decision
Table

Ruleset
Operation

Function
Operation

Fig. 3. Types of operations

Frontend, composite, and consumer operations have flows of actions, where call ac-

tions may call other operations. Integration operations ensure integration to external

systems via various adapters. Decision tables and ruleset operations enable business

decisions to be described and integrated into decision flows. Function operations ena-

ble computational expressions to be included.

From the user interface perspective, the most interesting operation is the frontend

operation shown in Fig. 4. Decision actions allow for flow branching. Call actions

allow other operations to be called and their results may be used by other actions in

the flow. Data are always mapped from context of the flow to the action called. The

context itself is a set of all action results.

Frontend
Operation

Operation
Action

Form Action

Form

*

Call Action

calls

*

Exception

throws

*

*

Feedback
Action

Feedback

*

Decision
Action

Decision
Branch

*

*

*

calls

Fig. 4. Frontend operation and its flow actions

Form actions represent user interactions where the user is presented with information

and decides about further processing. Feedback actions are used to provide users with

feedback on the actions performed, mainly signaling exceptional states.

Composite operations are similar to frontend operations, but they do not include user

interactions (forms). They are used mainly for defining business logic reusable across

channels. Consumer operations are operations that may be called by external systems

to provide or retrieve information from the multichannel solution.

There are other concepts used such as application menus, operation mocks, more

types of operation actions, mappings, interfaces, form widgets, exception handling,

tests, etc. that are also part of the multichannel metamodel, but their details are not

necessary for overall understanding of the presented model-driven solution.

2.2 Model Interpreter

Based on our experience with both code generation and model interpretation (present-

ed in [3]) we decided to use full model interpretation. For a large modeling project,

the biggest advantage of model interpretation is that the modelers are able to see

quickly the running application with the new functionality they are currently working

on. The usual cycle is to create form, put it into a flow, map some data to it and see

how it looks and how it works. The path from model to running application has to be

as fast as possible. In such a case immediate model interpretation via purposely im-

plemented Java-based framework was superior over Java code generation.

The model interpreter is able to execute the various types of operations based on

the models represented in the form of XML configuration files. It renders screens

with forms, maps data to flow actions, calls integrated systems, makes decisions,

evaluates expressions, etc.

Within model-driven solution, the value of model interpreter is in its reusability for

different models confirming to the same metamodel. The models contain the valuable

information expressed in technology-independent way and the model interpreter is the

particular technology that is able to execute it. Furthermore, the model interpreter

itself is replaceable by another model interpreter written different way in another

technology, or model interpretation may be replaced by code generation into yet an-

other technology.

2.3 Metarepository

During the domain engineering process metamodelers define the metamodel and in-

terpreter developers implement the model interpreter that enables execution of models

that confirm to the metamodel. To enable multichannel applications to be created by

modelers modeling tools are needed. The best model-driven way to create a modeling

tool is to configure a metatool with a metamodel. For this purpose we used the

Metada Metarepository, which is a metamodeling tool based on the Mambo Meta-

modeling Environment [4] and is similar to Adex [5]. Metarepository was used to

define the metamodel that in turn is interpreted by the Metarepository to create the

multichannel solution modeling environment.

3 Application Engineering

It took several iterations of the domain engineering process to create a modeling envi-

ronment usable by application modelers to model the multichannel solution. Even as

application was being modeled the metamodel, model interpreter, and even the meta-

tool had to evolve based on the gained knowledge from the project. For example, the

metamodel and interpreter had to accommodate support for various new widgets or

exception handling mechanisms. Metarepository had to be extended to support private

development branches, so that each modeler would have a sandbox and would not be

continually distracted by ongoing changes of other developers.

3.1 Multichannel Solution Model

Five different channel applications were modeled. After several adjustments, compo-

nents were divided into two types: frontend components and business components.

Only frontend components include frontend operations and there is only one frontend

component per channel as shown in Fig. 5. Business components (about twenty) are

channel-independent reusable functionalities divided by business subdomain such as

payments, deposits, investments, or loans. Several business components also cover

other aspects such as statements, notifications or security.

Application A

FE

Application B

FE

Application C

FE

Application D

FE

Application E

FE

BC BC BC BC BC BC BC BC BC BC

BC BC BC BC BC BC BC BC BC BC

Fig. 5. Applications, frontend components, business components

The business components also include integration and consumer operations represent-

ing all communications with external systems for the given business domain.

3.2 Channel Applications

There were five different channel applications each with its specifics that were not

necessary to express in a model. The look and feel of a mobile application is different

than that of the web application. Client facing applications have different non-

functional requirements than applications for call-center employees. Each channel

application may require also different ways of user authentication. For these reasons

the base framework for each channel application was hand-coded and included points

through which the modeled functionalities (mainly menu and frontend operations)

were exposed. There was a special team of application developers that took care of

this part of development.

4 Discussion

The project was originally planned as a two year project that should implement a new

multichannel solution to fully replace the old existing one. The expected effort was

high and over a hundred of people had to participate on the project in different roles at

most times. There were in total 160 people that used the Metarepository tooling dur-

ing the course of the project and there were peak times when there were about 50

concurrent users. If there are specific problems to be named they are:

─ Scale of functionalities to be implemented in relatively short time

─ High parallelism of development tasks

─ Relative shortage of project management skills

Model-driven techniques are relatively good in managing complexity by increasing

the level of abstraction. This way variety of the system being implemented is lower

and thus it is easier to control its implementation (based on the law of requisite variety

[6]). Nevertheless, the scale of the requirements to be realized was so big that there

was no one on the project that could alone take hold of. By the principle of perfor-

mance load [7] that states that “the greater the effort to accomplish a task, the less

likely the task will be accomplished successfully”, the project was lucky to actually

successfully complete its main goals within three years. There is no way to know how

the project would do without the model-driven approach, but we believe that it would

not be as successful.

5 Parallel Development and Versioning

The high parallelism of tasks was something we could help with on the modeling

tools side. Before the project, Metarepository used Subversion versioning system to

version models. This made release management possible and it was a good model

distribution and backup solution. Nevertheless, what was not easy with Subversion

was sandboxing, because we had just one central instance of the Metarepository ac-

cessed by all modelers via an internet browser, and did not want to decentralize the

tooling. We only needed sandboxing that would allow individual modelers to be

shielded from changes of other modelers in the related parts of models.

Since the models were executable, the changes of one modeler were necessarily

breaking executability for others. We therefore looked for a solution that would effec-

tively enable large number of concurrent development branches that could be easily

updated with changes of other users only when needed, and allow changes to be pub-

lished to other users only when they are done and tested. Also we needed a solution

that would enable changes from one release branch to be merged into another release

branch (e.g. a production fix from a production branch to a development branch).

The solution was to use Git versioning system and extend it with the support for

sparse checkouts. When a private branch (i.e. sandbox) is created, only a new Git

branch pointer is created, when changes are made, only those changes are written to

the sparse. No full checkouts are needed, which makes large number of private

branches to be continually in use (in our case around 150 at times).

The reason for that many branches was not only the number of modelers, but also

parallelism of the project releases. When the first release was migrated to production,

a release branch had to remain for production fixes, there was also a development

release branch for next minor release, and a third release branch where the next major

release was being prepared. Thus there were three parallel release branches with its

associated private branches, one or more per individual modeler.

6 Conclusion

We have applied model-driven techniques on a relatively large project in banking,

where a new multichannel banking solution was created within three years’ time to

replace an existing obsolete solution. We used Metarepository, our own metamodel-

ing tool, to create metamodel of the multichannel solution, and to enable modelers to

fully model all business-relevant functionalities of the solution in an executable mod-

el. For the purposes of model execution a model interpreter was built to provide for

all the needed user interactions, business logic, and integrations.

The metamodel was relatively simple, but we had to deal with the large amount of

functionalities that had to be implemented in relatively short time by numerous mod-

elers in a parallel and coordinated fashion. To support the parallelism and multi-user

aspect of modeling, we had to extend our tooling with the ability to support multiple

parallel model branches so that individual modelers would be able to develop and

debug their executable models in a sandbox without distracting and without being

distracted by all the other ongoing development of other modelers.

The major project milestones were reached, though with some delays that could

have been accounted for with such a complexity and effort expected to be realized.

The metamodel and the tool helped abstracting the system into smaller number of

clear concepts that could be then more effectively defined and manipulated. It was

also possible to develop large amount of functionality in manageable and coordinated

fashion in a working environment with many people and some lack of management

skills.

From the model-driven engineering perspective we see that the biggest value for

the given organization is that the three years’ worth of work of so many people is

cleanly expressed in a platform independent model and not encoded into a specific

technology again, and will not have to be thrown away when the technology becomes

obsolete the next time.

References

1. Pohl, K., Böckle, G., van der Linden, F.: Software Product Line Engineering: Foundations,

Principles, and Techniques. Springer, Berlin, Heidelberg, New York (2005)

2. Arboleda, H., Royer, J.-C.: Model-Driven and Software Product Line Engineering. ISTE

Ltd and John Wiley & Sons (2012)

3. Smolik, P., Vitkovsky, P.: Code Generation Nirvana. In: Modeling Foundations and Ap-

plications, 8th European Conference on Modelling Foundations and Applications

(ECMFA), Denmark. Springer, Heidelberg (2012)

4. Smolik, P.: Mambo Metamodeling Environment, Doctoral Thesis, Brno University of

Technology, http://www.mambomde.com/MamboMDE.pdf (2006)

5. Reddy, S., Mulani, J., Bahulkar, A.: Adex – a meta modeling framework for repository-

centric systems building. In: 10th International Conference on Management of Data,

COMAD 2000, Pune, India. Computer Society of India (2000)

6. Ashby, W.R.: An Introduction to Cybernetics. Chapman & Hall (1956)

7. Lidwell, W., Holden, K., Butler, J.: Universal principles of design. Rockport Publishers

(2010)

Teaching Object-oriented Programming using Object

Benches: Practical Experience

Jakub Livovský, Miroslav Biňas, Jaroslav Porubän

Department of Computers and Informatics

Technical University of Košice

Letná 9, 042 00 Košice, Slovakia

{jakub.livovsky, miroslav.binas, jaroslav.poruban}@tuke.sk

Abstract. In this paper we summarize our long-term experiences with teaching

object-oriented programming in university courses using teaching support tools

called object benches. We describe four software tools: BlueJ, Greenfoot, Alice

and Visual Studio’s Object test bench. Common feature of those tools is

runtime access to objects, their attributes and operations. We present our expe-

rience with using object benches in programming courses, we evaluate the

above mentioned tools in context of teaching object-oriented programming and

compare them with our OAT tool we have developed to support object-oriented

programming teaching. The comparison is based on several criteria - solution’s

architecture, level of interactivity and domain specificity. As a result of the

evaluation, we summarize the advantages and disadvantages of different ap-

proaches to design educational tools for teaching of object-oriented program-

ming. We also discuss the main decisions behind the design and development of

our OAT tool.

1 Introduction

Object-oriented programming (OOP) is relatively complex programming paradigm

when we take into account the number of different concepts used in OOP [1], [2] (e.g.

classes, constructors, attributes, operations, polymorphism, inheritance, subtyping).

Therefore OOP teachers count on educational tools when learning OOP concepts and

paradigm. A lot of research has been done in the field of educational software for

teaching OOP [3] and many tools are available today [4], [5]. Amongst them the ob-

ject benches are the most successful tools in teaching basic OOP principles.

Common features provided by object bench tools are runtime access to objects,

their attributes and operations. Using object bench, users can create new instances of

classes, access attributes of objects and execute operations on objects. User interface

of those tools typically consists of three main components: standard class diagram

well known from UML, object bench displaying existing/created objects and inspec-

tor providing access to attributes and operations. Using object bench the basic OOP

concepts can be explained on practical examples. Object bench’s users can practice

class instances creation using constructors and can manipulate created objects and

mailto:jaroslav.poruban%7d@tuke.sk

their relationships. At the same time user can observe impacts of his/her actions di-

rectly within the object bench.

2 Experiences with Object Benches

During last few years we used a few object benches in OOP course at our university.

Following section characterizes these tools and describes our experience with them.

BlueJ is an integrated Java environment specifically designed for introductory

teaching of object-oriented programming [6]. It is developed by La Trobe University

(Australia), University of Kent (UK) and Oracle. Its aim is to provide an easy-to-use

teaching environment for the Java language. Anyway, its source editor is not compa-

rable with industrial IDE in terms of functionality. There were a few unsuccessful

attempts to integrate the BlueJ with professional IDE. According to our five years

experience with BlueJ, students want rather use professional IDEs. The side effect of

using BlueJ for too long during the courses is that students will start to use it for de-

velopment of more complex projects later.

Greenfoot is an integrated Java environment based on BlueJ. It is also designed for

introductory teaching of object-oriented programming. BlueJ is focused on develop-

ment of simple 2D games [7]. It provides much more interactivity with objects than

BlueJ directly in developed game. We tried Greenfoot for one week long introductory

course of simple game development for teenagers and they adopted it very quickly.

Because it is based on BlueJ it has same disadvantages as stated in previous section.

Alice is a product of multi-university initiative to create educational software for

teaching computer programming in 3D environment [8]. However, complexity of the

IDE and 3D world interaction can be seen too complex a for novice programmers.

For one year we also used Object Test Bench (OTB), the integral part of Mi-

crosoft Visual Studio (VS). Because of its tight integration with VS, it has the biggest

potential of all mentioned tools. The main problem was to achieve interactivity with

objects painted on canvas (because of single thread architecture) and support for en-

capsulation (private fields were visible). OTB VS was probably not seen by authors of

Visual Studio as teaching tool but more as a testing tool. If you wanted to use OTB

VS, you had to install Team version of VS. However, OTB is no longer supported in

VS from version 2010.

After a brief description of object benches, let us compare them from different

viewpoints in the following sections. The comparison is concluded in the Tab. 1.

Architecture

The one of the most important thing when comparing object benches is its architec-

ture. An object bench could be developed as a standalone integrated development

environment for developing software applications (IDE), an IDE extension (plug-in),

or a library. Let us look briefly at these approaches.

The most complex approach is to build an object bench as an IDE. While building

the object bench as an IDE requires a lot of development effort it could be customized

to the higher level providing all the features required for optimal teaching. Object

bench’s designers throw away any specific features not related directly to teaching of

object-oriented programming making it simpler to navigate and use for a novice pro-

grammer.

Nowadays, industrial IDEs are very complex tools with lot of features supporting

and simplifying the development of software applications, e.g. syntax highlighting,

refactoring, code completion, code formatting, software visualization, unit testing,

source code versioning. It takes significant development effort when one decides to

build such a complex object bench as a standalone IDE. We should take into account

that developed IDE should incorporate the today major IDE features. Otherwise stu-

dents will be disappointed with the quality of the IDE and they will criticize it. When

team decides to build object bench as a standalone IDE then teaching benefits from

IDE usage must clearly outweigh all other mentioned disadvantages taking the cost of

development into the mind. The features for the object bench IDE must be selected

very carefully with respect to the most important practices and tools used in the indus-

try and teaching methods at the same time. Finally, designer should also realize that

industry tools are constantly evolving, so it will be necessary to evolve the object

bench IDE to stay in touch with current trends. In our comparison, the BlueJ and Al-

ice are representatives of standalone IDE approach.

Another approach to build an object bench is to extend an existing IDE with re-

quired feature for learning of OOP. Using these approach authors of an object bench

can reuse a whole existing IDE infrastructure. This kind of object bench could be

quite complicated because it provides all the features from extending IDE. It is good

idea to use a possibility of an IDE to hide unimportant features simplifying navigation

and understanding of a novice user and use IDE as a platform. Otherwise student can

get stuck with all the unnecessary details for learning. The Greenfoot and Object Test

Bench for Visual Studio are the representatives of this approach. The Greenfoot is

built on the top of BlueJ IDE while OTB for VS is a part of Microsoft Visual Studio.

The last presented architectural approach is to build object bench as a lightweight

standalone library. The object bench will be used as a library while running the appli-

cation allowing introspecting objects and modifying running application. The library

itself is an IDE independent and can be embedded into any regular Java application as

a common library. On the other side, such a tool will lack the direct navigation to

source code and does not contain source code manipulation support. The main benefit

is that user can work in any IDE without any restrictions. At the same time tool and

IDE can evolve independently.

Of course, it is easy to imagine that architectural approaches could be mixed. It is

possible to develop object bench as a library and IDE extension at the same time ben-

efiting from both approaches, i.e. lightweight architecture and source code navigation.

Interactivity

This property defines the possibility of changing object’s attributes and executing

the object’s method while the application is running in background. Only Object Test

Bench for Visual Studio does not support this behavior because of its single threaded

implementation.

Domain

Some object benches are suitable for developing of all kinds of applications and

some are domain specific. Object benches in our comparison are general-purpose

except the Greenfoot designed for building simple interactive 2D computer games and

Alice for developing 3D interactive scenarios.

Programming language

Since object benches are primary used for teaching of OOP they have to support

one or more object-oriented programming languages in which students express their

solutions. The Java is currently favorite object bench developer choice.

Visualization

Visualization of objects directly in an application can support the understanding of

object programming concepts. The BlueJ and OTB VS do not have any special fea-

tures/support for visualization of in-application objects directly in the application. On

the other side, Greenfoot and OAT both have support for 2D visualization. Finally,

the Alice is built around the concept of attractive 3D visualization. Alice’s authors are

using the 3D visualization concept as an important motivating factor for learning,

providing natural visualization of objects.

Table 1. Comparing object benches

Tool Architecture Interactivity Domain Programming

language

Visualization

BlueJ IDE Yes general Java no

Greenfoot IDE extension Yes games Java 2D

OTB VS IDE extension No general .Net family no

Alice IDE Yes scenarios alice / Java 3D

OAT Library Yes general Java 2D

3 The Object Access Tool

Coming out from our experiences with tools mentioned before, we created the object

bench tool called Object Access Tool (Fig. 1) abbreviated as OAT. The OAT was

primarily designed for use with 2D Java games. 2D games naturally contain objects

with graphic representation and this fact can support student’s projection of objects

via physical metaphor. For this purpose the OAT tool contains optional support for

visualization of objects in both target application and object bench. Although OAT is

primarily designed for 2D games, it is implemented as the universal library and it is

possible to bind it to any Java application.

Architecture

For the OAT implementation we considered three different architectural approach-

es described in the previous sections. Right at the beginning we rejected the approach

to create a new IDE. Like we stated before it would be a quite demanding task to

create and maintain an IDE that could compete with industry grade IDEs. Instead, we

wanted to take advantage of those professional IDEs and avoid students’ transition

from educational IDE to a professional one.

Fig. 1. OAT object bench with 2D game as target application

Both two remaining approaches have their advantages and disadvantages. Tight inte-

gration with an IDE is a significant advantage of IDE extension approach. In such a

setting, user can directly navigate from an object bench to application’s source code

and vice versa. It means straight navigation between visualized object in an applica-

tion and object’s class sources code or navigation between selected attribut-

ed/operation in inspector and its source code. Tight integration would also allow ob-

ject bench developer interact with many IDE functions, e.g. refactoring.

The advantage of a standalone library approach is in its lightweight infrastructure

and minimum of dependencies. Library can be used with any development environ-

ment and is not dependent on any specific version of an IDE. The library can be em-

bedded into any regular application.

Target application binding

Another important issue of the OAT tool development was the binding strategy to

a target application. We considered two different approaches: defining a set of inter-

faces or use of aspect-oriented programming (AOP).

The main benefit of using AOP is in its composability. Using AOP we don’t have

to modify the source code of an inspected application. Object bench application

adapter could be implemented as an aspect that injects all necessary code to target

application. The fact that we can’t explicitly define the contract between the OAT and

a user application is one of shortcoming of this solution. Our goal was to make a uni-

versal tool, which could target various applications. Because the architecture of each

application is different, it is not possible to write universal set of pointcuts and advic-

es. They have to be modified for each specific target application. The problem is we

can’t formally define what has to be modified and how to modify it. This kind of

modification would not be possible without detailed understanding of OAT imple-

mentation.

OAT was primarily designed to support teaching object-oriented programming -

for example, to test the new classes implemented by student in an existing project.

With help of object bench student can create and test instances of his classes without

having to modify the existing source code. Using AOP in this case would require the

aspect language compiler to be available in student’s environment due to weaving

into new classes. It also should be noted that the aspect-oriented programming is not

as widespread as, for example, object-oriented programming. A requirement to use

AOP for binding with target application could discourage people from using OAT

tool.

On the other hand interfaces are providing a method to define communication re-

quirements between object bench and target application. Our solution consists of two

interfaces specifying the contract between OAT and target application:

InspectableApplication - defines the communication from object bench to target

application. As a consequence it also specifies functional requirements for target ap-

plication. The target application adapter must implement this interface in order to

OAT can access the application.

ApplicationListener - defines the communication from target application to object

bench. Target application propagates events and changes to object bench class

through calling this interface’s operations.

The form of InspectableApplication interface implementation is left to the user. In

our sample solution (Fig. 2) we implemented ApplicationListener by the adapter class

- ApplicationAdapter. Adapter is extending target application with necessary func-

tionality whilst monitoring changes in application and propagating them to observer

implementing ApplicationListener.

Keeping track of all objects existing in target application is one example of a prob-

lem in which AOP would be more useful than interfaces. Object bench in OAT needs

access to an up-to-date list of application’s object to work with. OAT tool was de-

signed primarily for use with 2D games which is a specific category of target applica-

tions. Majority of 2D games contains one class representing the game world. Game

world holds a list of actor belonging to this world. In this case it is relatively easy to

implement this feature in Adapter.

The use of OAT tool is not limited only to games. In applications without central

list of objects where objects are created on many different places, it would be much

more complicated to keep track of all objects in adapter. This is where AOP comes in

handy. With AOP it is possible to target all constructors executions to monitor creat-

ing of objects.

Fig. 2. OAT architecture

Saving the application state

One common problem of object bench tools mentioned in first section is that they

do not keep the state of application. When a change in source code of target applica-

tion is made, they need to recompile source codes and restart application. Which

means the state of application is lost. All objects created with object bench are gone

and they have to be recreated again by user.

We are trying to keep the state of application in our solution. Our solution needs to

recompile and restart between changes too, but we are using the fact that the target

application in our sample solution is a game. The state of game is represented by the

state of its actors. We are using serialization for saving the state of actors between

restarts. The main problem with using serialization is that our solution allows users to

expand the target application. Due to this fact, we cannot rely on compliance of their

codes with the naming conventions or the presence of annotations or default construc-

tors.

Three approaches to serialization were considered - XML serialization (Java

beans), standard Java serialization and custom serialization solution. The XML serial-

ization is not suitable, because it requires presence of getter / setter pairs of operations

with standardized naming. This solution would require modifying the target applica-

tion so it satisfies this condition and we cannot guarantee this requirement in source

codes added by users.

The problem with using Java serialization is that it is impossible to de-serialize

saved object the class file was changed between application restarts. Java serialization

calculates the hash code of the class files, and if it finds that they have changed, it

won’t de-serialize the object. With Java serialization we can restore only objects

whose code has not been changed.

We could implement our own solution for serialization into XML. By using reflec-

tion we could store the attributes and their values during serialization of objects and

we could re-set them during de-serialization. Thus, we could reconstruct all attributes

that have not been changed. If only operations in the class were changed, we would be

able to de-serialize the entire object to its previous state. The remaining problem is

how to create a new object during de-serialization. User can create a new class with-

out an empty constructor. In this case we would not know which constructor and ar-

guments values to use for de-serialization.

4 Conclusion

In this paper we summarized our long term experience obtained during lecturing ob-

ject-oriented course with object benches at our university. Object benches are im-

portant tool for OOP teaching, but they lack support known from professional IDEs.

We presented the design of our object access tool with the aim of minimizing all of

the disadvantages of existing object benches we have experiences with. If you decide

to use our OAT, you will get traditional object bench tool for your favorite IDE with

no extra limitations for target application you want to create.

Acknowledgement

This work was supported by KEGA Grant No. 021TUKE-4/2011 Platform for inte-

gration of study guides and tools within the learning process.

References

1. N. Liberman et al.: Difficulties in Learning Inheritance and Polymorphism. In: ACM

Transactions on Computing Education (TOCE). vol. 11, n. 1, article no. 4. Februar 2011.

2. A. Robins et al.: Learning and Teaching Programming: A Review and Discussion. In:

Computer Science Education, 2003, Vol. 13, No. 2, pp. 137172.

3. A. Pears et al.: A survey of literature on the teaching of introductory programming. In:

ACM SIGCSE Bulletin, v.39 no.4, December 2007.

4. S. Georgantaki and S. Retalis: Using Educational Tools for Teaching Object Oriented De-

sign and Programming. In: Journal of Information Technology Impact, vol. 7, no. 22.

2007. p. 111-130.

5. M. Ben-Ari and N. Ragonis, Noa: On understanding the statics and dynamics of object-

oriented programs. In: SIGCSE ’05 Proceedings of the 36th SIGCSE technical symposium

on Computer science education. 2005. pp. 226-230.

6. M. Kölling et al.: The BlueJ system and its pedagogy. In: Journal of Computer Science

Education, Special Issue on Learning and Teaching Object Technology, Vol 13, No 4.

2003.

7. M. Kölling: The Greenfoot Programming Environment. In: ACM Transactions on Compu-

ting Education (TOCE), vol. 10, no. 4, article no. 14, November 2010.

8. W. Dann, et al.: Mediated transfer: Alice 3 to Java. In: SIGCSE’12 Proceedings of the

43rd ACM technical symposium on Computer Science Education. 2012. p. 141-146.

Development of the Dictionary Writing Software

Kamil Barbierik1,2,3, Martina Holcová Habrová3, Vladimı́r Jarý1,2,3,
Pavla Kochová3, Tomáš Lǐska1,2,3, Zdeňka Opavská3, Miroslav Virius1,3

{kamil.barbierik,tomas.liska}@foxcom.cz

{holcova,kochova,opavska}@ujc.cas.cz

miroslav.virius@fjfi.cvut.cz

1 Czech Technical University in Prague
2 FoxCom s. r. o., Prague

3 Institute of the Czech Language of the Academy of Sciences of the CR, v. v. i.

Abstract. Currently, a new monolingual dictionary of the contempo-
rary Czech language is being prepared at the Institute of the Czech lan-
guage of the Academy of Sciences of the Czech Republic. As part of
this project supported by the Ministry of Culture of the Czech Republic
grant within the National and Cultural Identity (NAKI) applied research
program a dictionary writing software is being developed. Firstly, the rea-
sons for developing a brand new software are presented. Then, the overall
software architecture is discussed in details; the software is implemented
as a web application based on PHP, HTML, and MySQL technologies,
users interact with it via the web browser. In the following part, the main
modules of the system including editing module, list of entries module,
administration module, or output module are introduced. Finally, the
current status of the project is analyzed and future plans that include
development of native clients for the iOS and the Android platforms are
presented.

Keywords: dictionary writing system, dws, database system, lexicogra-
phy.

1 Introduction

The Department of Contemporary Lexicology and Lexicography of the Institute
of the Czech Language of the Academy of Sciences of the Czech Republic, v.
v. i., is preparing a new monolingual dictionary of contemporary Czech since
2012. Its working title is Akademický slovńık současné češtiny (The Academic
Dictionary of Contemporary Czech). It is a medium-sized dictionary with the
expected number of 120,000–150,000 lexical units.

As a support for this project, a new Dictionary Writing System (DWS) is de-
veloped. The detailed specification of the requirements from the lexicographer’s
point of view can be found in the article A New Path to a Modern Monolingual
Dictionary of Contemporary Czech: the Structure of Data in the New Dictionary
Writing System [1].

We describe selected aspects of the finished parts of our DWS implementa-
tion devoted to the lexicographer audience. First we shortly mention existing
solutions and the tools we have used. Next we shortly describe the structure of
the data and the user interface of the application.

Finally we evaluate the production run of the finished part of the application.

2 Existing DWSs

There are several foreign commercial DWSs (e.g. TshwaneLex [7], IDM DPS [4],
iLEX [5]) as well as open-source systems (e.g. the Mātāpuna Dictionary Writing
System [6]) available. The DEB II [2], [3], dictionary editor and browser, is
available for the Czech language.

The lexicographic team of the Institute of the Czech Language of the Academy
of Sciences of the CR, v. v. i., that prepares a new monolingual dictionary of
contemporary Czech language, considered to buy one of the available DWSs,
to use one of the open-source systems or to develop our own system. One the
criterion used was the DWS price; the other was the amount of the necessary ad-
justments for the significant specifics of the compilation of the dictionary and the
time devoted to this task, if we decide for a commercial or open-source system.

Our final decision was to develop our own DWS that will fully respect the
significant specifics of the compilation of the dictionary.

3 Tools for the Data Processing in the DWS

Our DWS is intended for the lexicographic team that may be spread over differ-
ent locations and that needs to share common data that may be changed by any
member of the team. Thus we decided to develop it as a multi-tier web based
application with thin client.

The data processed by the DWS are mostly textual, but highly structured.
We have chosen the MySQL database as data storage that constitutes the data
tier of our application.

On the other hand, the user of the DWS has to be able to input the data into
the database structure, edit the data, define the relations etc. The presentation
tier of our application is based on the HTML forms with JavaScript client-side
scripting; this is flexible enough to create forms containing different types of
input fields and other controls for data management that check the user input
before it is sent to the middle tier for processing.

The middle tier (or the application server) is the engine between the database
tier and the presentation tier. It gets data and commands from the user interface,
processes it with the cooperation of the database and sends the results to the
database, to the user interface or to both. We have built the application server
using the PHP programming language.

It is not necessary to introduce the above mentioned tools in detail.

4 MySQL Data Structure

The data in the database are stored in the so called tables that are interconnected
through the so called relations. The main table of the whole data structure of our
database is a table called “heslo” (i.e. lemma; see Fig. 1). It consists of 8 fields
of different types according to the types of stored data.

Fig. 1. The “heslo” table — icon and definition

The first field, “id”, is the so called primary key; it is an integer number that
uniquely identifies the lemma. What concerns the other fields, let us mention
the “cts” field containing the time of creation, “uts” field containing the time of
an update, the “vystup” field containing a flag indicating whether the lemma is
intended to participate in the output and the “lexgraf pozn” field containing the
lexicographer’s note.

Fig. 2. Relation between “heslo” and “vyznamy” tables in the database notation

According to the requirements of lexicographers on the DWS listed in [1],
it is often necessary to be able to duplicate some fields of the dictionary mi-
crostructure. The examples are the senses of the lemma: one word may have
several meanings. This is implemented in the database as 1-to-many relation
(see Fig. 2) using the foreign key “hid”. This enables to attach several word
meanings to one entry of the “heslo” table.

Fig. 3. Diagram describing the structure of tables containing the data for the List of
entries module and their relations

5 HTML User Interface

The user interface of our DWS is divided into four main modules.

– List of entries module
– Editing module
– Output module

– Administrative module

We mention the List of entries and next we focus on Editing module in the
following section.

5.1 List of Entries Module

The List of entries module contains information from several tables of the data-
base. Therefore the relations between tables have to be used to extract and join
relevant entries of these tables. Fig. 3 presents the so called entity-relationship
diagram describing part of the DWS data structure containing all the information
needed to generate the list of entries in the current form. The user interface of
the List of entries module is shown in Fig. 4.

Fig. 4. User interface of the List of entries module

The Quick search function (Fig. 5), that is available in this module, is op-
erating over the whole database. According to the selected field to search in,
the corresponding tables are joined together and then the resulting structure is
searched for matching entries. The output of the search engine is always the “id”
of the lemma, i.e. the value of “id” column of entry in “heslo” table. The IDs that
were outputted from the search function are passed to another function that
generates the list of entries. This function puts together all respective informa-
tion that belongs to the certain ID and finally outputs the list of entries that
contains only these entries that matches the search value in the defined field.

The Basic filter function that is also present in this module contains several
predefined filters which mostly operate over certain part of the database. The
results of the filter function are again IDs of lemmas and the further processing is
the same as described in the paragraph about Quick search function. The filters
available here are as follows:

– My entries, which filters out all entries in which the currently logged user is
mentioned as an editor.

– Selected entries, which return only entries that were selected before applying
the filter. This filter uses rather the so called SESSION variables to keep the
track of selected entries instead of saving them to the database.

– All entries, which deletes all constraints and returns all the entries without
exception.

– Entries created/updated in interval, which returns all the entries that were
created/updated in specified time interval.

Fig. 5. The Quick search function

5.2 Editing Module

The Editing module is used to input or edit the data related to lemmas. It is
basically a huge form composed of HTML elements like text input elements, text
areas, select boxes, radio buttons, checkboxes and control buttons. The type of
the utilized element depends on the type of data the user (lexicographer) will
input.

Text Input Field. Text input (Fig. 6) allows collecting shorter text data that
does not contain new lines. The text input allows for instance limiting the number
of input characters. Data from such a field is stored in the database in the field of
type VARCHAR. The example of data collected by this field is the pronunciation
and its comment.

Data from the field of this type is then sent to the middle tier to be processed
and saved to the database to the corresponding field. Specifically the mentioned

Fig. 6. Text input field

pronunciation (when it is a pronunciation referring to the variant) is saved to
the table “vyslovnost var”.

As we can see on Fig. 7, there are fields “vyslovnost” for the pronuncia-
tion value and “komentar” for its comment; they are of type VARCHAR. The
“vyslovnost” field is constrained to be nonempty, while the “komentar” is op-
tional. This means that if an editor tries to save the pronunciation without any
value, the system will notify him that it is not possible. The comment is optional,
thus entries, where the pronunciation is properly filled and the comment is left
blank, are valid.

Fig. 7. The “vyslovnost var” table — icon and definition

Text Areas. Text areas are multi line text inputs. The length of the text is not
limited in any way. What is more, the majority of browsers allow resizing them
by dragging a corner, thus the user can comfortably set its size according to his
or her needs. Some of the text areas in our application automatically set their
sizes to fit the text contained in them. This saves place when the text area does
not contain any text; when there is a lot of text inside, the user does not have
to scroll it and sees the entire text contained in the text area immediately.

The example of data collected by this input field is the lexicographic note
(see Fig. 8).

The data from this input field is saved to database in the field of type TEXT.
The lexicographic note is information referring to the lemma. It is therefore saved
to the “heslo” table in the “lexgraf pozn” field. As we can see on Fig. 1, this field
is of type TEXT and is optional, thus an entry with an empty lexicographic note
is valid.

For some textual inputs, it is necessary to allow the user formatting of the
text in some way. This is provided by the WYSIWYG (What You See Is What

Fig. 8. Text area for the lexicographic note

You Get) form element. It is a text area input field equipped with formatting
controls. This functionality is entirely provided by the JavaScript technology.
The WYSIWYG function formats the text using HTML tags and displays it to
the user in nicely formatted way. The user does not see these tags. Since the
tags are textual information just like the formatted text, the process of saving
data that contains formatting tags to database is the same as saving data from
ordinary text areas. You can see an example of the WYSIWYG form element in
the Fig. 9.

Fig. 9. The WISYWIG form element

The formatting options are: a bold text, an italic text, a font size, angular
brackets (with the automatic smaller font size), Czech quotation marks and
functions like “remove format” important when pasting the text from different
sources, and also “undo/redo” function.

Radio Buttons. Radio buttons provide an ability to select exactly one among
several options. The example is the field “vystup” tied together with the ex-
emplification (see Fig. 10), which allows the editor to control whether certain
exemplification will be present in the lemma output. Each option is represented
by a constant value predefined in the application. The value of the selected op-
tion is saved to the database in the corresponding table field. The mentioned
output state is saved in the “vystup”field of the “exemplifikace” table. The value
to be stored in the database is of type integer. Thus the field type in the database
is INT.

Select Boxes. The more complex form of element is the select box. Select boxes
are used to fill in the information into the field by selecting from predefined

Fig. 10. The “Exemplifikace” (exemplification) table icon

values. These values are defined by administrators of the system. Thus, the
values are prepared and managed by very few people, what helps to keep data
consistent. Sometimes, of course, the editor will need to input the value that is
not prepared in select box. This situation is also solved in the system.

The standard HTML select boxes do not satisfy our needs. Especially, they
do not offer any option to add other value than those that select box offers or
changing the order of selected values. Therefore we implemented our own select
boxes by putting together several standard HTML inputs. Let us describe one
example — the “type of lemma” select box.

Fig. 11. New type of select box developed for our DWS

Selected values are displayed in the white window in the current version. In
the case we see on Fig. 11, there is only one value selected; this is indicated in
the little blue rectangle on the right hand side of the box. Of course, several
values can be selected. But because there is a lot of other inputs in the form and
we want to save as much place as possible, we only display the first two selected
options. The number of options actually selected is indicated in the little blue
window. To change the selection of entries in this select box we click the yellow
“E” button, which brings up a popup window with the editing tool (Fig. 12).

All available options are shown in the left window. To select values, user
has to move them from the left pane to the right one. When several values are
selected and moved to the right pane, you can adjust the order of them by using
the arrows on the right hand side. If the user does not find the value he or she
needs in the left pane, he or she can select the “jiné” (“other”) value and move it
to the right window. After that he or she can write his or her own value in the
“jiné” text field. When finished, the user pushes the “OK” button that changes
the selection to the state set by user and closes the popup window.

The administrator manages the values of these select boxes from a separated
module. He or she can add/remove elements and change their initial order. More-

Fig. 12. Selecting more options

over, he or she can also monitor the statistics of using the “jiné” field and if a
value is frequently used, he or she can decide to include it to the predefined
values by a single click (on green arrow — see Fig. 13).

Fig. 13. Administration of the values for out select boxes and the statistics of the“jiné”
(“other”) value

The following Fig. 14 shows the data structure used for the values from select
boxes.

The predefined values are stored in tables with “cis ” prefix. E.g. the pre-
defined values for “typ hesla” select box by the administrator are stored in the
table “cis typ hesla”, as shown on the Fig. 14. The values chosen by the editor

Fig. 14. Data structure for the values of the select boxes

are stored in the table “typ hesla var vyber”. Finally, this table is related to the
table “varianty”, which holds the information about variants of lemmas.

Cross-references. One very important part of the dictionary macrostructure
is the cross-reference between lemmas. To allow lexicographer define the cross-
reference, an implementation of a special form was necessary. This form consists
of several input fields of different types.

Fig. 15. Creating the relation

Two types of references are implemented: 1) run-on entries or references
between one-word and multi-word lexical units (see Fig. 15) and 2) links to
entries (see Fig. 16). Every relation has two ends: the master and the slave
entry. Our DWS allows creating the relation from both of entries.

Fig. 16. The system offers the blind references

To create the run-on entry or references between one-word and multi-word
lexical units, the reference from the master to the slave entry, we use the popup
window, which is evoked by clicking the appropriate button in the main edit
form.

We can select the place from which the slave will be referenced, the type
of the reference and finally the referenced lemma in the form. When inserting
the slave entry, the auto-complete function is offering existing lemmas. When we
insert word that is not yet in the database, the blind reference will be created. In
the future, when some user creates an entry that corresponds to the blind end of
an already existing reference, the system will automatically replace it with the
created one.

Similarly, links to entries are also edited in the popup window, when edited
from the master entry.

When linking entries, we can define more places at once from which the slave
entry will be referenced. Moreover, we can define places the slave will reference
to. It is possible to select multiple places (word meanings) at once. The text
field allows defining the slave entry. The auto-complete function is present in
this form, too. Furthermore, we define the type of link by selecting one of the
values proposed by the select box (“dok.” for instance, see Fig.ă16).

The forms used to create references from the slave entries are as follows. They
are very similar to these in popup windows (see Fig. 17 and 18).

Fig. 19 presents the entity-relationship diagram of the data structure storing
the relations.

All the relations are stored in the “hesla rel” table. Whether the relation is
the “run-on entryŤ or the “link to entry”, both are stored in the field “rel type”.
Places referenced in the master entry are stored in the “hesla rel places” table
and the places referenced in the slave entries are stored in the“hesla rel slave places”.
If the relation is the “link to entry”, we need to store the link type (for instance

Fig. 17. Interconnecting the lemmas: the slave entry

Fig. 18. Interconnecting the lemmas: the master entry

“dok.” from the figure 16). The table “cis hesla rel link type” stores the prede-
fined values for the select box in the HTML form. In the table“hesla rel link type-
vyber” the selection from the select box is stored. Even though only one link
type can be selected in the current version, the data structure is prepared to store
also multiple link types for the relation, if such functionality would be required
in the future.

6 Conclusion

The DWS project was prepared during the year 2012. In 2013, the production
run of implemented parts has been launched.

Up to now, 6,000 entries have been processed by the lexicographers of the
Department of Contemporary Lexicology and Lexicography of the Institute of

Fig. 19. Diagram of the data structure storing the relations between lemmas

the Czech Language using our DWS. This production run proved that the im-
plemented part of the DWS fully complies the lexicographer’s needs and require-
ments.

The DWS will be extended by the following modules:

– Editorial tool that makes easy the correction and proofreading process,

– Data tracking module, that serves to the tracing of all the important and
interesting activities in the DWS,

– xFilter module, which is a complex search tool which provides fulltext search,
exact search, interval search and other advanced search capabilities,

– Revision control system to keep track of the entry editing history,

– Dictionary web interface for the public in the form of the web application or
an application for the mobile platforms,

– Automatic lemma processing module intended for the automation of selected
processes.

Detailed description of the intended modules can be found in [1].

Acknowledgement. This work has been supported by the grant project of
the National and Cultural Identity (NAKI) applied research and development
programme A New Path to a Modern Monolingual Dictionary of Contemporary
Czech (DF13P01OVV011).

References

1. Barbierik, K. et al.: A New Path to a Modern Monolingual Dictionary of Con-
temporary Czech: the Structure of Data in the New Dictionary Writing System.
Accepted to the Slovko conference.

2. DEB II. http://deb.fi.muni.cz/index-cs.php
3. DEBDict. http://deb.fi.muni.cz/debdict/index-cs.php
4. IDM DPS. http://www.idm.fr/products/dictionary writing system dps/27/
5. iLEX. http://www.emp.dk/ilexweb/index.jsp
6. http://sourceforge.net/projects/matapuna/
7. TshwaneLex. http://tshwanedje.com/tshwanelex/

Tool for Statistical Classification of Java Projects

Michal Rost?, Josef Smolka, Matej Mojzeš, and Miroslav Virius

Czech technical university in Prague, Faculty of nuclear sciences and physical
engineering, Brehova 7, 115 19, Prague 1

Abstract. This paper describes design and implementation of software
tool for statistical classification on a source code. In contrast to classic
methods of defined structures detection, based on traversing of AST,
statistical approach allows one to see the structures from a higher per-
spective. However, features, used for a subsequent classification, have
to be collected from AST by conventional methods. Data for classifiers
are collected from a XML representation of an abstract syntax tree using
the XQuery language. This enables the tool to work potentially with any
programming language. For the time being, the tool supports conversion
of Java source code to XML AST. The tool implements various classifi-
cation methods as well as methods for verification of trained classifiers.

1 Introduction

To transfer principles from image recognition to a source code, one has to deal
with all the tedious work around statistical classification, e.g. feature definitions
and data collection, features data preprocessing, classifier construction, training
and validation. That all has to done, because there is no general tool (or library)
to support statistical classification over source code. The first question is how
to define a feature space and collect features data. To which attributes of source
code should be features invariant? Is there equivalent of invariance to translation
and rotation from image recognition? How to collect feature data? Should be
data collected from text representation of source code, from abstract syntax tree
(AST) [2, 5], from abstract semantic graph (ASG), or from runtime? This paper
presents design and implementation of such a general tool that enables users to
easily define their feature space, train, validate and use predefined classifiers.
The paper also gives an example of tool application: features definition and
classification using several predefined classifiers.

2 Requirements

Before the design of the software was specified, requirements have been formu-
lated.

? Corresponding author, rost.michal@gmail.com

Functional requirements:

1. Manage features definitions and collect features data
2. Classify project’s code
3. Manage classification results
4. Provide posterior analysis for classified data

Ad 1. Collect features from project’s source code, store them in the corre-
sponding objects and provide access to these objects.

Ad 2. Provide various statistical classifiers. Enable their configuration and
classification of project’s data types with the chosen classifier. Consequently,
obtain results for all data types in the project and all the considered classes,
where each result is represented by a probability that given data type belongs
to one particular class.

Ad 3. Manage project’s classification history, registered for all runs of all
classifiers, because results from one uniformly configured classifier can vary over
time.

Ad 4. Provide additional operations in order to measure quality of classifiers,
perform cross validations, or apply balance criterions to classification results.

Non-functional requirements:

1. Modularity & extensionability
2. OS independence

Ad 1. Application has to be separated into individual components that will
provide their interfaces to the rest of the application. This allows easy inter-
changeability of module implementation, or simply adding a new implementa-
tion.

Ad 2. Since java [6] is an OS independent framework, the designed tool is
required to be also OS independent, in order to integrate it into Java IDEs in
the future.

3 Tool design

The first non-functional requirement ”modularity & extensionability” could lead
to use of some modular framework like OSGi. But since the modularity and
extensionability is not required from a viewpoint of an user (user plug-ins), but
from a programmer’s viewpoint, and considering the size of the project and a
realization team (small), use of such complex framework is unnecessary. Desired
goal can be easily achieved by clean object design. Four main components have
been identified during the design phase.

The first component, the collector, is responsible for procession of source
codes and collection of features data. A source code is parsed [2] and an abstract
syntax tree created. Features are defined as mapping , where is a tree and is the
set of real numbers. A set of collected data for a feature space can be defined as
. The should be from an interval , but it is not a necessity as data are typically

normalized before further use. Let is a sub tree of connected with through a
node . Let is created from by disconnecting from and connecting it to a node
, so the only change is translation of sub tree . If the equations , where is a
tree stripped of every occurrence of , are valid and then we say that the feature
is invariant to translation. In contrast to image recognition, where an apple is
apple regardless of position on picture and thus invariance to translation is a
desired property of well-mannered feature, in source code recognition, position
(context) can be significant. The big question during the design time of the
collector component has been the level of detail on which the features should
be collected. The consensus is to relate all features to data type definitions.
Even features that describe relations between data types can be attached to
particular data type. Such features are considered as descriptors of the data
type neighborhood.

Fig. 1. A component diagram of designed tool. Four main components have been iden-
tified: collector, classifier, validator, and launcher.

The second component, the classifier, is the core of the whole solution. Clas-
sifiers can be either simple or compound, where a compound classifier consists
of two or more other classifiers and a balance criterion. The balance criterion
is a judge among the sub classifiers and does the final decision. A classifier is
responsible for identification to which category an observation belongs to. For-
mally, a classifier can be understood as function , where is a dimension of the
feature space and is a set of classes. To distinguish between different meanings
of the term class (java data type vs. classification class), we would use data
type for the first meaning and class for the second one. The decision is based
on feature vector passed to classifier from the collector mentioned earlier. As
the tool is intended to carry out statistical classification, each classifier has to be
trained first by supervised training before application to real data. Unsupervised

learning (clustering) is not intended for the time being but can be easily added
later.

Fig. 2. BPMN diagram of users interaction with the tool.

The third component, the validator, is used for regression model validation,
particularly a k-fold cross validation. This is a process of determination how
results of a statistical analysis will affect independent data sets. During k-fold
validation a project observation (a set of features of each data type) is split into

k disjoint subsets, then subsets are utilized for training of a classifier and one
subset is used for validation (testing). Cross validation is finished, after all k
subsets were used for validation.

The last component, the launcher, represents only a layer that performs top
level operations over Classifier, Validator and Collector components. It will allow
user to start classification or validation and configure their parameters.

4 Tool implementation

A core of the proposed tool has been implemented in Java. The collector is using
parser component from Eclipse. An abstract syntax tree obtained by the parser
is traversed by the visitor pattern [4] and XML representation in DOM format is
created, where nodes in DOM has still reference to original AST nodes. This ap-
proach enables features to be defined as transformations of XML document. The
tool uses XQuery [8, 7] as feature definition language, specifically an implemen-
tation from the Nux library as Java does not provide XQuery implementation.
The collector crawls the directory structure of a project, parse the source code
and create XML AST for each found data type. The tree is then stored in a
database to be accessed later by XQuery scripts. Features data are collected
by executing defined features scripts for each data type in the database. The
transformation is carried out with particular data type, but the script can easily
access AST of others data types to look up additional information.

Fig. 3. A class diagram of classification and validation interfaces.

The classifiers are implemented as layer over Neuroph [3] and Java-ML [1]
libraries. Neuroph library is used for ANN classifiers and supports several com-
mon ANN architectures: perceptron, multi-layer perceptron, rbf network, neuro
fuzzy perceptron, Hebbian network, and others. The Java-ML library provides
implementation of Support Vector Machine classifier, k-NN (k nearest neigh-

bours) classifier and Naive Bayes classifier. Other classifiers as LDA and QDA
are to be implemented in the near future.

The validators are implemented as classes that realize interface IValidator
(Figure 3) and they allow to perform validation of a given project observation
using a given classifier. Results from both classification and validation processes
are represented by a common interface IResult, which, among other, allows cal-
culating error rate of performed process. Value of error rate depends on how
the best classified class is selected. This selection is performed using balance
criterions, represented by interface IBilantionCriterium.

At present, the tool has a text user interface (TUI), provided by Apache
Commons CLI library. This allows user to select a required classifier as well as
other options through command line parameters. User settings are subsequently
passed to the launcher. In the future graphical interface is planned to be imple-
mented.

5 Application example

This section gives a brief explanation of how the designed tool works.

At first project for classification has to be selected and passed to the tool
in a form of directory. Then features are collected for each data type in a given
directory. Currently, there are 42 types of features collected by the tool; these
features are divided into four major groups: expression features, statement fea-
tures, member features and relation features. Expression and statement features
are connected with expressions and statements in the project code, typical ex-
pression feature is for instance a number of instantiations within a definition of
a one data type weighted by total number of expressions in the same data type.
Typical member feature is for example number of public, non-static setters and
getters in a selected data type weighted by total number of methods in the data
type. Relation features depict a relationship of a data type with its surroundings;
this kind of feature is for instance a logical value, which is set to true, if data
type uses his direct parent type as an attribute.

Example: Number of class instantiations within a definition of a data type

for $type in .//type

let $norm := count($type//expression[@expression-type =

’class-instance-creation’])

let $res :=

count(

$type//method[@constructor =

’false’]/body//expression[@expression-type =

’class-instance-creation’]

) div (if ($norm > 0) then $norm else 1)

return flib:result($featureId, $type, $res)

Example: Number of getters/setters

for $type in .//type

let $res :=

count(

$type//method[@constructor = ’false’ and @public = ’true’

and @static = ’false’

and (astlib:is-method-pure-getter($type, .)

or astlib:is-method-pure-setter($type, .))]

) div flib:method-norm($type)

return flib:result($featureId, $type, $res)

Example: Direct parent as an attribute

for $type in .//type

let $superTypes := ($type//supertype/name/text(),

$type//super-interfaces/interface/name/text())

let $res :=

if (

count(

$type//field[not(astlib:is-type-primitive(./variable-type)

) and $superTypes = ./variable-type/name/text()]) > 0

) then 1 else 0

return flib:result($featureId, $type, $res)

After features are collected, they are passed to the trained classifier, where
all project’s data types are processed and it is estimated, which class is the
most suitable one for a given data type. At the moment, there are ten classes
recognized by the developed tool; each class refers to a one special kind of data
type. These classes are: Adapter (adapts one interface to the other one), Bean
(encapsulates data and provides access to it), Builder (creates various configu-
rations of a particular type), Composite (represents a recursive type composed
of attributes of the same type), Constant (contains declarations of constants),
Decorator (adds additional functionality to a given type), Factory (creates new
instances of a given abstract type), Proxy (changes implementation of a given
type), Utility (provides static utility methods), Worker (performs operations
with instances of other types).

If a user wants to train a classifier, he has to provide the tool with an ad-
ditional configuration file containing user’s classifications of data types in the
input project.

6 Conclusion

In this paper, we have stated, that there is no general purpose tool for the sta-
tistical classification over source code and have proposed a specification for such
a tool after formulation of functional and nonfunctional requirements. Design

of the tool was described and some implementation details and considerations
were given. The tool was created within the research of application of statistical
classification over source code. The intention was to simplify and speed up the
process of feature testing and thus support overall reduction of the feature space
as mentioned in the previous section.

7 Acknowledgment

This paper was supported by grants SGS11/167/OHK4/3T/14 and LA08015.

References

1. Abeel, T., de Peer, Y.V., Saeys Y.: Java-ML A Machine Learning Library. In: ’Jour-
nal of Machine Learning Research’, (2009), vol. 10, pp. 931-934.

2. Aho, A.V., Lam, M.S., Sethi R., Ullman J.D.: Compilers: Principles, Techniques,
and Tools. Addison-Wesley, (2006), 2nd edition.

3. Neuroph project, http://neuroph.sourceforge.net/
4. Pecinovský, R.: Návrhové vzory. Computer Press, (2007).
5. Smolka, J.: Refactoring tool for Java programs. Master’s thesis, Czech Technical

University, (2010).
6. Virius, M.: Java pro zelenáče. Neocortex, (2005).
7. W3C XQuery, http://www.w3.org/TR/xquery/
8. Walmsley, P.: XQuery: Search Across a Variety of XML Data. O’Reilly Media,

(2007).

Lessons learned from a case study of scrum adoption at

complex system integration project

Jakub Balada

Department of Information Technologies, Prague University of Economics

Abstract. Scrum has become the most used agile methodology, mostly for

standard information systems development projects. In general, agile meth-

odologies are considered as an alternative to standard rigorous methodolo-

gies, which are still recommended for complex system development. We

have adopted scrum during implementation of complex system integration

project of the Identity and Access management for Telefonica O2 Czech

Republic. Lessons learned from this case study are the main purpose of this

article.

1. Introduction

Agile principles represent a modern way of information system development,

which brings more effective process of IS development. The basis of agile ap-

proach to the IS development is a maximal effort to satisfy customer requirements,

which are usually changed during the project realization. In other words, it is the

endless effort in helping a customer to increase its competitiveness through the in-

time delivery of the service, which he really needs at a given time.

Agile methodologies have already established themselves in cases of smaller

projects with short implementation time. According to the world wide survey [5],

the most used agile methodology is Scrum. It is used by 52% of respondents,

while another 14% uses a combination of Scrum and XP. In general, the agile de-

velopment is used approximately in one half of all projects. One of main barriers

according to this survey is project complexity which was mentioned by 30% of re-

spondents.

In general, agile methodologies are considered as an alternative to standard rig-

orous methodologies which are still recommended for complex system develop-

ment. The article Limitations of agile software processes [4] states the following

conditions and limitations for adoption of agile methodologies:

o limited support for distributed development environments

o limited support for subcontracting

o limited support for building reusable artifacts

o limited support for development involving large teams

o limited support for developing safety-critical software

o limited support for developing large, complex software

In the conclusion of the [4] it is summarized that companies developing long-time

complex projects would not be able to use agile principles in their current form.

1.1. Goals of this paper and methods of their achievement

The main goal of this paper is to describe benefits of the agile methodology

Scrum in comparison with rigorous methodologies in the development of complex

information systems. Advantages of this methodology are known enough in cases

of certain project types. However, the goal of this paper is to prove benefits even

in the case of complex IS development projects. The case study of the Scrum

methodology adoption during the development of a complex information system is

used for this purpose. Concretely, it is the project of the Identity and Access man-

agement setting for the Telefónica O2 Czech Republic, which controls accesses of

more than 18000 employees to tens of various systems. The project was divided

into two main phases, where the first one was managed in the rigorous way and

the second one with the help of the Scrum methodology. Therefore, we are able to

compare main characteristics of the project in particular phases and to prove suc-

cess of the Scum methodology adoption.

2. Scrum

K. Schwaber and J. Sutherland are considered to be the founders of the Scrum

methodology. They both, independently from each other, used principles of this

methodology even in the 90s of the last century. They were also among authors of

the Manifesto for Agile Software Development [1], in which 4 basic values and 12

principles of agile development are defined.

Based on these values, they developed the Scrum, which is a typical agile

methodology. The main goal is functional software, which is delivered in regular

short intervals and is ready to be deployed to the customer side. The cooperation

with the customer is the key point - Scrum is based on the win-win model where

requests for change are not a problem but are, in fact welcomed and will help the

customer in his competitive environment.

3

2.1. Development process according to Scrum methodology

The development process itself is based on an iterative lifecycle model. Par-

ticular iterations are called Sprints and have always the same duration, typically

one month. The result of each Sprint is tested and deployable increment. Require-

ments (user stories) which are defined at the beginning of the Sprint in the so

called Sprint Backlog, are implemented within each Sprint. Sprint Backlog is the

subset of the Product Backlog which represents the complete list of all require-

ments for the software being developed. The priorities of Product Backlog items

are highly important. According to these priorities the tasks for the next sprint are

chosen. This way the in-time delivery of the most needed services, is ensured.

3. Case study introduction

At first it is necessary to state the main parameters of the project in which the

benefits of Scrum methodology are presented. It is the project of Identity and Ac-

cess Management implementation for the Telefónica O2 Czech Republic, devel-

oped by the Siemens IT Solutions and Services (SIS). Author of this paper was the

solution architect and after transition to Scrum also the Scrum Master responsible

for the Scrum methodology adoption in this project.

The project consisted of the implementation and customization of the set of

DirX products, which were developed by the mother company in Germany. The

goal of the solution was a control of all the company employees (c. 18000) and

their accounts in most of company’s information systems (the solution serves

about 260 000 accounts in 900 servers, 200 databases and 200 applications with

12 500 permissions). The final solution should have reduced the time needed to

create employee’s account, the work of administrators because of automatic crea-

tion and removal of all accounts in the most important IS, centralized control of

users and their access rights, and last but not least should have increased the secu-

rity including successful SOX audit.

On the supplier side, there were three subjects in the project. SIS – the prime

provider (8 people), SIS Germany – the main supplier of basic products (support

team), and the sub-provider, responsible for the graphical user interface integrated

into the customer’s intranet – Orchitech Solutions (6 people).

The sponsor of the project on the customer’s side was the IT Security Depart-

ment. However, the main portion of requirements arose from the IT Production

Department, which is the main user of the system, and last but not least from the

Business Department. As it was discovered during the project, requirements of

these three sides were quite different, sometimes even opposing. The detail speci-

fication of requirements, which was the amendment of the contract, contained 130

functional and non-functional requirements.

The project was divided into two main phases. The first one started in Septem-

ber 2008 and should have lasted 12 months. Its aim was to achieve the first ver-

sion of the solution, which should have been set into the production environment.

The second phase should have lasted 5 months, and its aim was to connect other

IS of the company, as required in the specification. So, the project should have

been finished in February 2010 with the successful production of the second

phase.

Since the beginning of the project the first phase has been managed by a stand-

ard rigorous methodology based on waterfall model. Analysis meetings, resulting

in a large document describing the detail design of the first phase and briefer de-

sign of the second phase were held during the first 3 months. After that the im-

plementation with 2 milestones presenting key parts of the solution followed. Ac-

cording to the plan – one month before the end of the first phase – the solution

was passed to the acceptance testing. However, these tests discovered a big

amount of misunderstandings in the specification, even when the detailed design

was approved before. These problems resulted in prolongation of acceptance test-

ing and consequent stabilizing operation. The first phase was officially accepted at

the end of 2009 with a four-month delay followed by two sets of change requests.

After this experience, the steering committee asked the project team for analyz-

ing the reasons for delays and the increasing costs for change requests and asked

for suggestions of measures which would result in a successful realization of the

second phase of the project. Based on the provider’s recommendation, the change

of the development methodology was approved for this purpose, and the Scrum

methodology was chosen for the second phase of the project.

The main argument, thanks to which the steering committee approved the

Scrum methodology adoption, was a big amount of change requests after realiza-

tion of a first phase. Other arguments were not meeting deadlines in the first

phase, better understanding of the project state, possibility to set new functionali-

ties in month cycles, and not-used functionalities implemented in the first phase.

This last point is a common problem, which could be eliminated with the help of

Scrum. According to the Chaos Report 2009, issued by the Standish Group, 50%

of implemented functionalities have never been used. It is due to the traditional

approach, when a customer must specify all requirements, including the so-called

nice to have, at the beginning of the project.

Based on problems during the first phase of a case study project, these main

metrics were chosen to prove benefits of scrum adoption in the second phase:

1. Phase delay [%] = delay / fixed time x 100

2. Possibility to change req. [%] = new req. / final functionality x 100

3. Number of deployable releases per month = number of releases / phase

duration

4. Customer visibility into project state per month = number of demo meet-

ings / phase duration

5

4. Scrum adoption process

The case study, described above, has envinced most of limitations of Scrum

adoption described in [7]. In this chapter, the process of transition from the rigor-

ous way of project management in the first project phase to the Scrum methodolo-

gy in the second project phase and consequences of this step are described.

The first phase of the project was finished by acceptance of two lists of change

requests deployed into the production environment of the customer in April 2010

which meant 7 months after the planned date. The second project phase, where re-

quirements were a subset of the original detailed project specification, should have

followed. Because the project was developed with the help of rigorous methodol-

ogy till that time, the rough solution design, which should have been implemented

in the second project phase, had been already made. By the contract, the project

was agreed as the so called fix-time, fix-price from the very beginning, So all

tasks of the second project phase were already in the offer, later in analysis and

design, evaluated in man-days. The steering committee agreed with an agreement,

thanks to which the content of the second project phase could have been changed

according to the actual needs of the customer. Dates and price were kept the same.

The first step of the transition from a rigorous methodology to Scrum was an

initial Product Backlog filling. In our case, we were talking about the set of re-

quirements from the original specification of the second phase, which were trans-

formed into user stories. The initial velocity of one sprint was calculated by divid-

ing the time estimates of the whole project phase by four month sprints. Next, the

initial backlog had to be prioritized in order to choose tasks for the first sprint.

This step was very complicated since it was a problem to define the product owner

on the customer’s side. But the Scrum Master strictly insisted on the nomination

of one person on the customer’s side. Finally, an external employee of the cus-

tomer, who had been the project manager and had experience with development of

such types of IS, was nominated. The product owner built a function counting pri-

orities of particular user stories based on their benefits to the company goals ac-

cording to the concrete departments (business, security, operations). With the help

of this function he prioritized all the newly incoming requirements for the whole

development phase.

Each sprint lasted one month, while the last week in the Sprint was reserved for

customer acceptance. So, on average 16 days left for the development. During ac-

ceptance tests, the team was already preparing the next sprint. Namely, analytical

meetings took place in order to define the design and estimates for the new user

stories. Verification meetings focusing on the tasks in a sprint were held in the

first two days of a sprint. After this, the design of the whole sprint was closed. Af-

ter this verification, the customer strictly could not change the definition of tasks

in this sprint. If this happened, the required change was added to the product back-

log and if it had sufficient priority it was put into the next sprint. The first day of

the acceptance testing, the presentation of new functionalities (sprint review) was

made and tests according to testing scenarios, which have been defined at the be-

ginning of verification meetings, then officially started.

This approach is based on a Scrum Type B defined in [3], which uses overlap-

ping iterations.

Figure 1: Types of SCRUM [3]

Only once within all 4 sprints, the increment was not deployed during the first

regular system break after one week of acceptance testing. The reason was an

enormous number of reported bugs, which led to one-week delay of the new ver-

sion deployment. However, the next sprint ran in parallel within the defined terms.

Because concurrently with the second phase development the system was already

in use in the production environment a small relevant portion of minor bugs, dis-

covered in tests, was solved by a standard problem management of the project, as

there was no obstacle to put the new version into the production environment.

The last fourth sprint was accepted in October 2010 with eight-day delay, and

after testing and acceptance of the whole second phase, the project was officially

accepted and finished in November of the same year. Despite time delays of dead-

lines in the first phase, the project was marked successful with a next evolution at

present.

5. Benefits from scrum adoption

With no doubts, the greatest benefit of the Scrum adoption in this project was a

possibility to define the content of month sprints before their starts. After four

sprints, there were implemented less than 45% of requirements of the original

specification of the second phase. The reminding 55% was replaced by require-

ments that have newly arisen during the development process. At the beginning of

7

the second phase, user stories replacement process was agreed. In the case of a

new requirement, another requirement with the same estimate and the lowest pri-

ority was omitted. As time went on, the customer already realized that the second

phase can finish the product backlog with some user stories not done, and simply

added newly defined required functionalities. The basis was the agreed velocity of

particular sprints counted according to the original agreement. At the end custom-

er added requirements with higher priority with estimation of 2.4 months (56.47 %

of whole second phase). In a first phase, customer could change requirements only

after acceptance of initially required functionality in two series of change requests,

which took 3 months (15.79 % of 19 months of complete first phase).

Unofficially, the fix-time, fix-price contract was changed into fix-time, fix-

price contracts of particular increments, defined in their starts. The indispensable

provider’s benefit of this principle is the monthly invoicing with positive influence

for his cash flow. Mutual trust between a provider and a customer is the necessary

condition for such process, at least because of acceptance of suggested estimates

of new user stories.

Table 1 Comparison of phases by defined metrics

Metric Phase 1 Phase 2

Phase delay 7 / 12 x 100 = 58.3 % 0.25 / 4 x 100 = 6.25 %

Possibility to change requirements 3 / 19 x 100 = 15.79 % 2.4 / 4.25 x 100 = 56.47 %

Number of deployable releases 3 / 19 = 0.16 per month 4 / 4.25 = 0.94 per month

Customer visibility into project state 5 / 19 = 0.26 per month 4 / 4.25 = 0.94 per month

The next already mentioned benefit was meeting the deadline of the second

phase of the project. Only eight-day delay means 6.25% against 58.3% in a first

phase (7 months delay after 12 months fix-time phase). Incremental acceptance

and deployment of particular sprints into the production environment immediately

after their implementations helped the deadline to be met a lot. There were only 3

releases in the first phase with change request series (that means 0.16 per month)

against 4 in the second phase (0.94 per month).

A presentation date of new functionalities within a sprint was never postponed.

Only once, all tasks of the backlog sprint were not caught up with the implementa-

tion deadline and 2 tasks with the lowest priority were moved into the next sprint

and implemented without invoicing. That means 4 demo meetings in the second

phase (0.94 per month) against 5 (2 development milestones, first release and 2

change request series) in the first one (0.26 per month).

It is difficult to compare the quality of the delivered IS of the both phases. The

number of reported bugs from acceptance tests is comparable. Nevertheless,

Scrum helped in identifying of bugs far sooner than in the case of a classic devel-

opment and so the bug-fixing was not so time consuming with regard to the inte-

gration with other parts of the solution.

On the other hand the dependency between phases has to be taken into consid-

eration. Development teams had some domain experience from the first phase and

more demanding requirements were in a first phase.

6. Conclusion and future work

Information systems projects still fail to a great extent. Agile methodologies

reached higher level of success in specific projects developed by small teams.

However most of IT companies still refuse to use this approach at large-scale pro-

jects within complex environments.

Goal of this paper was to prove a benefit of Scrum adoption at large-scale pro-

jects. For this purpose project case study of Identity and Access implementation

was described. This project is characterized by limitations discussed above which

should avoid Scrum adoption. Nevertheless project was marked successful prima-

ry due to the change of methodology from plan-driven to Scrum using described

practices solving those limitations at our project. This change helped to meet all

the dates of the project, enhanced visibility into project realization, enabled de-

ployment of new functionalities on a monthly basis and mainly helped to deliver

functionalities which bring higher value to a business. All these benefits are prov-

en by evaluation of defined metrics.

As a future work I would like to extend described practices for scrum adoption

at large-scale projects within complex environment.

7. References

1. Beck, K. et al.: Manifesto for Agile Software Development [online]. 2001. Cited 2012-04-15.

<http://agilemanifesto.org/>.

2. Schwaber, K., Beedle, M.: Agile Software Development with SCRUM. Prentice Hall, 2001.

3. Sutherland, J.: Future of Scrum: Parallel Pipelining of Sprints in Complex. Projects. AGILE

2005 Conference, Denver, CO, IEEE.

4. Turk, D., France, R., Rumpe B.: Limitations of agile software processes. In Proc. of the 3th In-

ternational Conference on eXtreme Programming and Agile Processes in Software Engineer-

ing. 2002.

5. VersionOne: The State of Agile Development Survey [online]. 2011 Cited 2012-04-15.

<http://www.versionone.com/pdf/2011_state_of_agile_development_survey_results.pdf>.

http://agilemanifesto.org/
http://www.versionone.com/pdf/2011_state_of_agile_development_survey_results.pdf

Functional Programming Constructs

and Their Integration into Lessons of

Object Oriented Architecture

Rudolf Pecinovský

University of Economics, Prague, 4 Winston Churchill sq., 130 67 Prague 3
rudolf@pecinovsky.cz

Abstract. In contemporary programming the significance of parallelizability of

wide range of human activities is increasing. The development of various

teaching tools is so quick that it is difficult to even watch it. Concurrently a

natural endeavor is arising to install such programming constructs which would

enable to transfer the main burden to the used libraries and frameworks and

leave only a care for the best programming of the required business logic to

programmers. A significant place among these constructs belongs to functional

programming, above all the lambda expressions and data streams. This paper

presents their basic characteristics and how these constructs can be included

into the lessons on the object oriented architecture.

1 Introduction

The performance efficiency of computers increases at present above all due to the

increased number of cores as well as the number of processors in the system. Of

course, this efficiency is still increasing according to the well-known Moor’s Law, but

the efficiency of running programs does not follow the Moor’s curve for a long time.

With regards to the above mentioned growth of computer effectiveness the

effectiveness of programs is subjected to the Amdahl’s Law which says that the T(n)

time needed for carrying out of the algorithm at n processors can be derived from the

T(1) time needed for using one processor with the help of the following formula (1, 3):

where B presents the proportional representation of that part of the program that

cannot be parallelized. If B=0, i.e. when the program cannot be parallelized at all, it

would run with the same speed any time independently of how many processors would

be at its disposal. If B=1, i.e. when the program will be parallelized by 100 per cent,

the program would run quicker as many times as many processors would be at its

disposal.

To provide the highest parallelizability of the program is usually not simple and

mostly it requires a very good knowledge of not only processed issues but also of the

programming constructs through which the parallel running is carried out. That´s why

we can register a strengthening pressure to transfer as much of these abilities and skills

into the functionality of compilers, frameworks and libraries and to set free the

programmers who then would be able to better concentrate for proposing optimal

business logic. Therefore various algorithms as well as data structures are developed

throughout the world which enable such transfer and make it easier (2, 3, 4, 5).

The side effect of these established algorithms and data structures is finding areas,

the proposal of which can be significantly improved with the help of these algorithms

and data structures, despite the need of its possible future parallelizability is not

considered.

Several such constructs have been brought by the functional programming. The

lambda expressions could be included into them as well as closures and data streams,

which are gradually incorporated into programming languages proposed originally for

different paradigms. Even the eighth version of Java language which is at present the

most wide-spread used language not only in programming practice, but also in

teaching, includes these constructs into its portfolio. Let’s have a look how to include

these novelties into teaching with the highest efficiency.

2 Extended concept of the interface construct

The new version of Java language comes with enhancing the interface usability with

the possibility to define an implicit definition of certain methods together with the

definition of static methods. This seemingly tiny extension has a huge impact at

possibilities of future extending of the functionality of classes implementing the given

interfaces.

In previous versions of the language, when you wanted to extend the possibilities of

classes implementing certain interface without modifying all classes which implement

the given interface, mostly you had to define the new interface, which should be

implemented by those classes that would offer this extended functionality.

In case this extension would not influence the current code, it would be more

advantageous to define the new class designed most often according to the design

pattern Utility Class or Servant, the methods of which had instances of the extended

classes among their parameters and defined the needed extension for them. However,

in the newly designed interfaces it is sufficient to add methods with implicit

definitions only, and the instances of all classes implementing the given interface will

automatically be enriched by the functionality defined like that.

The newly added possibilities can be used also for modifying the definitions of

current interfaces and for ensuing simplification of definitions of those classes which

will implement them in future. For example in 8 the Position crate representing the

position in double dimensioned space is defined. The IMovable interface characterizing

objects that know both to get and to set their positions is then defined as follows:

public interface IMovable extends IPaintable
{
 public Position getPosition();

 public void setPosition(int x, int y);

 public default void setPosition(Position position)
 {
 setPosition(position.x, position.y);
 }
}

When the definition is set like that, the classes implementing the IMovable interface do

not have to define all three methods because the implicit definition of

setPosition(Position) method will suit to prevailing majority of them, and that’s why

they will simply take it over.

However, this making the work easier is only a side effect of the above mentioned

extension of the interface data construct possibilities. The main advantage is the

above mentioned possibility to extend easily the functionality which does not need any

interventions into classes that already implement the modified interface. In the new

Java version a significant part of interfaces gained the new methods with implicit

definitions, whereas many of these interfaces have more implicitly defined methods

than the original ones.

3 Functional Interfaces

Such interface is called functional that requires a definition of the only method from

the implementing class. If it declares further methods it has to offer their implicit

implementation. No other requirements are placed at functional interface. No

parameters of this method are determined, neither the type of its return value.

Therefore the functional interfaces are often defined as generic types and the

specification of parameter types and the type of their return value of their method is

usually entered through type parameters.

There is a number of functional interfaces in the Java standard library. The older

ones are mostly one-purpose – they were proposed for one specific usage (e.g. the

interface java.lang.Comparable<T> defines the method serving for the comparison of

the given object with the other one), but in the Java 8 a number of universal functional

interfaces have been added. They have precisely defined only signatures of their

methods, but their contract (i.e. what they will be used for) is relatively free. The main

purpose of their introducing is the signature of the method declared in them according

to which these interfaces mostly received their names – e.g. as follows (the overview

shows full names of interfaces at the left side and the signature of declared methods in

the right side):

java.util.function.Consumer<T> void accept(T t)
java.util.function.BiConsumer<T, U> void accept(T t, U u)
java.util.function.Suplier<T> T get()
java.util.function.Function<T, R> R apply(T t)
java.util.function.BiFunction<T, U, R> R apply(T t, U u)
java.util.function.UnaryOperator<T> T apply(T operand)
java.util.function.BinaryOperator<T> T apply(T left, T right)

java.util.function.Predicate<T> boolean test(T t)
java.util.function.BiPredicate<T, U> boolean test(T t, U u)

4 Lambda expressions

The Lambda expressions represent the way how to define particular code part, which

we would like to use in another part of the program, as an object. These code parts are

defined by the compiler as instances of certain functional interface. The lambda

expression value is written down in the following form:

parametr -> výraz
(parametry) -> výraz
parametr -> { příkazy }
(parametry) -> { příkazy }

On the left from the arrow there is always a list of parameters (it may be empty) and

on the right there is an action which should be carried out. The following rules are

valid:

 If there is the only parameter on the left, you do not have to put it into

parentheses.

 If the compiler is able to derive the type of parameter, you do not have to quote

it.

 If there is no parameter on the left, you have to quote the empty parentheses.

 If you evaluate certain expression on the right, you do not have to put it into

braces.

The Lambda expressions behave as instances of functional interfaces, the method of

which has the corresponding parameters and returns the value of corresponding type

(the compiler arranges the relevant casting). If we need to remember them, we save

them as values of the given functional interface. And when we cannot save them into

the variable, we can pass them as the parameters of the methods.

Using of lambda expression can be demonstrated to students in a number of

examples, the most often of which are presentations of sorting using the user-defined

comparators. In 8 their application is demonstrated for using instances of the Repeater

class which are able to repeat the entered code part as many times as is required. After

finishing the required set of repeating the defined code is called which announces to

the applicant that the required repeating has been finished. The signature of the

discussed method is as follows:

public void repeat(final int times, Runnable action, Runnable finished)

5 Data streams

In computer technology the data streams are generally understood as sequences of

data elements made available over time. They may acquire different, more specific

meanings in various areas. Let’s precise firstly in which meaning this term will be

used in this paper.

In programming we mostly name by this term the objects mediating the transfer of

data from the source to the target – we are speaking about the input, output and input-

output streams. This paper does not deal with streams comprehended like that; it is

focused on objects which are named by this term in the type theory and in functional

programming. The term stream is used there in the sense of potentially endless list

which (contrary to the classic list) does not save data, but only „knows about them“.

Mostly those data are included into these streams at which we suppose their lazy

evaluation. Therefore we independently define which data will be included into the

stream (how the stream obtains these data), and how these data will be processed.

Then, in a suitable moment, we ask the stream to apply the entered operations with

these data.

These data streams can be introduced to students as an equivalent of a conveyor

used during the assembly line production.

 At the beginning of the stream there is an input. In case of assembly line

production it is a stock of parts, in case of a stream it will be a source of data -

mostly some source container.

 Along to the assembly line there are workplaces where the trained workers carry

out individual operations. In case of the stream we replace the workers by

methods (more precisely by lambda expressions) that will carry out the required

operation with the object. The processed object continues along the stream to the

next workplace.

 At the end of the assembly line the accomplished product drops out, at the end of

the stream we receive (at least we hope to receive) the required result.

The streams differ from the collections and the arrays, as the main representatives of

containers, in several important issues:

 They do not block any memory for processing data. The data are „flowing“, the

stream processes them and sends them further ahead.

 In most cases they do not influence the source data, which is very important

during multiple processing of data by several processors, because then

everybody call rely on the expected properties of input data.

 The planned operations behave similarly as the workers at the assembly line.

They do not flock to the stock (container) to process all entered data but they

wait until the processed object „flows“ to them with the stream and then they

look after them.

 The streams are not interested in the data input, if it is the final (classic

container), or endless (data continuously flowing from certain external source).

The operations we order at the stream (stand of the assembly line) can be divided into

two groups:

 The intermediate operations takeover the object, process it and send it further

along the stream. Therefore the output value of current operations is again the

data stream. Thanks to it we can concatenate these operations simply so that

further operation will be applied at the result of the first one, similarly as we do it

e.g. when further text is added into instances of the StreamBuilder class.

When using concurrent operations we have to have on mind that some of

them return their stream, but the others return the newly created stream.

Therefore, generally, we cannot call the current method without remembering

the stream which will return it. It is better to learn not to delete the returned

streams and immediately call some of their methods, or at least save them.

 The terminal operations complete the stream activity and give over the received

result to the surrounding program. The output value of these operations may be a

collection, an individual object or void – this comes in case that the result is the

required processing of an object.

The basic rule of the stream work is that during calling the methods incorporating

current actions the stream only remembers what should be done at the given stop. But

nothing is done at that moment, i.e. during incorporating the action. The activity will

be started only at the moment of incorporating the finishing action. Only this will start

the imaginary conveyor that transports the source objects from one workplace to the

other, so that we could receive the required result at the end.

6 Internal iterators

Teaching with classical conception of processing the set of objects saved in a

collection is based on using external processing of saved objects delivered through

sequence iterators – the program asks the collection for an iterator which then delivers

one saved object after another one and the program processes the given object. This

processing is running quite under the charge of that program and the programmer who

processes the program decides if he/she will use the possibility of parallel processing

of more objects to achieve increased efficiency.

When using the streams the internal, batch processing of given objects is preferred.

It means that the surrounding program does not require any iterator, but only provides

the code (optimally the lambda-expression) describing how the elements in the stream

should be processed. However, the organization of this processing is in charge of the

stream and it is defined by the library authors. The program that asks for this

processing informs the addressed stream if the processing of individual objects can be

considered as sufficiently independent, so that they could be realized parallelly. The

stream then decides how to divide processing to individual accessible processors.

The advantage of this access is multiple. As the most significant I would like to

quote two of them:

 The auxiliary code that was responsible for controlling of iterations disappears

from the program and the description of actions for processing the objects is far

clear.

 In case some more sophisticated techniques of parallelization of executed activities

will appear in future, it is not necessary to modify the program’s solving

application logics, but it is sufficient only to improve the stream library and thus

automatically the program processing, which these streams use, will be made more

efficient.

7 The new constructs and methodology Architecture First

The above analyzed techniques play into the hands of the Architecture First

methodology (9, 10, 11, 12) which teaches in initial phases only the architectonic view

on solving the problem and entrusts the creating of the necessary code to certain code

generator. When using the above described constructs, employing of classic

algorithmic constructs (as conditioned statements and loops) is considerably decreased

because the area of tasks, for solving of which we need only the statement sequence, is

significantly enlarged. Thus, at the same time, the area of tasks, for programming of

which relatively simple code generators are sufficient, is also extended. The students

can concentrate for studying and absorbing the key architectonic principles for a

longer time, not being distracted by the necessity to get at the code level and define

the operations by their own, because the used code generator does not suffice for their

definition.

8 Conclusion

This paper introduced the new programming constructs that are included into the most

used programming languages in the last time. It demonstrated their basic properties

based on the Java language and showed how these constructs can be presented to

students of introductory courses of programming. It also showed the impact of using

these constructs on the architecture of the system and briefly outlined their most

important advantages.

At the conclusion it also showed how including of these constructions according to

the methodology Architecture First can influence the teaching and outlined its

possible advantages.

References

1. AMDAHL, G.: Validity of the Single Processor Approach to Achieving Large-Scale

Computing Capabilities. AFIPS Conference Proceedings 1967.

2. Developing Parallel Programs – A Discussion of Popular Models. An Oracle White

Paper September 2010. Available at http://www.oracle.com/technetwork/server-storage/

solarisstudio/documentation/oss-parallel-programs-170709.pdf.

3. GOETZ B., PEIERLS T., BLOCH J., BOWBEER J., HOLMES D., LEA D.: Java

Concurrency in Practice. Addison-Wesley Professional 2006. ISBN 978-0-32-134960-6

4. Implicit parallelism. Available at http://en.wikipedia.org/wiki/Implicit_parallelism.

5. NIKHIL, R. Arvind: Implicit Parallel Programming in pH. ISBN 1-55860-644-0

6. PECINOVSKÝ Rudolf: Myslíme objektově v jazyku Java – kompletní učebnice pro

začátečníky, 2. aktualizované a rozšířené vydání. Grada Publishing, 2008. ISBN

978-80-247-2653-3.

7. PECINOVSKÝ Rudolf: OOP – příručka pro naprosté začátečníky. Computer Press,

2009, ISBN 978-80-251-2126-9.

8. PECINOVSKÝ Rudolf: Java 8 – učebnice objektové architektury pro mírně pokročilé.

Grada, 2013, ISBN 978-80-247-4638-8.

9. PECINOVSKÝ, R, KOFRÁNEK, J. How to improve understanding of OOP constructs.

Wroclaw 09.09.2012 – 12.09.2012. In: Science Education Research Conference. [online]

Wroclaw : PTI, 2012, s. 19–24. URL:

http://fedcsis.org/proceedings/fedcsis2012/pliks/136.pdf

10. PECINOVSKÝ R.: Principles of the Methodology Architecture First. Objekty 2012 –

Proceedings of the 17th international conference on object-oriented technologies, Praha.

ISBN 978-80-86847-63-4.

11. PECINOVSKÝ R.: Methodology Architecture First. Proceedings of the international

conference DidactIG 2013, Liberec. http://jtie.upol.cz/clanky_1_2013/JTIE-1-2013.pdf

12. PECINOVSKÝ, R., KOFRÁNEK, J.: The Experience with After-School Teaching of

Programming for Parents and Their Children. Las Vegas 22.07.2013 – 25.07.2013. In

FECS'13 -- The 2013 International Conference on Frontiers in Education: Computer

Science and Computer Engineering.

Author index

Balada, Jakub 157 Smolik, Petr 115
Barbierik, Kamil 133 Smolka, Josef 15, 149
Bartoška, Jan 71
Bi as, Miroslav 125ň Španihel, Vladimír 97
Buchalcevová, Alena 45
Bublík, Tomáš 87 Virius, Miroslav 7, 133, 149

Chlumecký, Martin 61

Doležal, Jan 71

Holcová Habrová, Martina 133
Horáková, Markéta 23
H ebík, Radek 103ř

Jarý, Vladimír 133
Judas, Jakub 7

Kochová, Pavla 133

Lacko, Branislav 71
Liška, Tomáš 133
Livovský, Jakub 125

Meško, Matej 77
Mojzeš, Matej 149

Opavská, Zde ka 133ň

Pecinovský, Rudolf 39, 165
Porubän, Jaroslav 125

Rais, Aziz Ahmad 39
Richta, Karel 53
Rost, Michal 149

