
YEAR 2000 PROBLEM - THE LESSONS LEARNED

Bogdan Pilawski

Wielkopolski Bank Kredytowy SA, Kozia 10, 61-835 POZNAN, Poland
phone +48 61 8564064, fax +48 61 8564063, mobile 605 253124
e-mail : bogdan.pilawski@wbk.com.pl

Poznañ University of Economics, Department of Information Technology,
Aleja Niepodlegoœci 10, 60-967 POZNAN, Poland

„The millennium bug is a vivid and powerful reminder of the ways that we are growing ever
more interdependent as we rise to the challenges of this new era”

President Clinton

Abstract

It is virtually impossible to cover all of multiple lessons learned from Year 2000 Problem. For
that reason this paper concentrates on an arbitrarily selected subset of those, leaving more general
key issues to another consideration. Among subjects covered one can find calendar date handling
by IT systems, date standards, management role in the year 2000 crisis and others. For the
obvious reason of limited space of this paper these subjects are only signalled and the reader is
directed to the sources presenting more detailed consideration.

Introduction

With the most critical dates related to the Year 2000 Problem being over, now one can try
to look for some lessons learned from this experience. No doubt these are going to cover a wide
area, and it is no wonder since the Year 2000 Problem has equally threatened things from
autopilots in aeroplanes to desktop PCs, and more advanced home appliances.

Generally the changeover from 1999 to 2000 was not that harmful as initially predicted, but
that by all means doesn’t say it has not done any harm at all. The number of real failures reported
was very limited (nearly one thousand of cases of more serious nature known world-wide). This
was mainly because anyone experiencing these failures was doing everything possible to hide
them from the public. The rationale behind it was simple: it would be a big shame to admit Y2K
related failure after all that media hype and pressure to be prepared. But ask any Clipper
programmer and you will get the right picture: they are still struggling to get things right. The
system they care for, usually behaves so-so in general, but there are plenty of secondary functions
which simply fail to operate or do yield wrong results. The estimates for Poland say there are
about 30 thousand Clipper (or dBASE, to be exact) related systems in use country wide. How
many of these operate properly? How many do run with the calendar date set back to a year from

152

the past? How many users finish off computer generated reports manually? How many files
interchanged between systems are manually editor-corrected before they can be processed?

Beside this now we know our IT systems much better than ever. We learned a lot about
what we had no time to study before. We needed to slow down and to look carefully on what’s
going on. Maybe the picture we had seen wasn’t gloomy, but it wasn’t pretty either.

Lesson no. 1 - Calendar date handling by IT systems

The Year 2000 Problem revealed numerous weaknesses of calendar date handling
capabilities of both computer hardware and software. The concept of atomic clock and the
introduction of UTC has made the time measure one of the most precise measurement techniques
none to mankind. While this can deviate by only one second over several million years, the more
rough measure of calendar dates is still the source of problems, and especially in the area of
computers and their software [Jone98a].

Whether it’s hardware clock or computer software, they are quite unable to cope with most
possible calendar dates, and with four digit years in particular. This is equally applicable to old
and new products in that area.1 The good example of this is the hardware clock of common PC. It
is around since 1984 when AT model of PC was introduced. It has been designed to handle two
digit year only and this has not changed till now. The truth is the Year 2000 compliance of a PC
is provided by a BIOS code and not by the clock itself.

The calendar we’re using is also to be blamed2. It is far from being precise and hopelessly
tries to get together the sun cycle (farming) and 28 day moon month (religion), using a unit of the
day, which is absolutely incompatible with either of them. If that’s not enough for trouble, just
add to that a concept of seven day week, for which no rationale exists.3 [Seid97]

There are only two software packages claiming they are capable of properly handling any
possible calendar date, whether current, future or from the past. These are SAP R/3 and ICL’s
GENTIA. This is extremely hard to prove that, especially bearing in consideration the period of
almost 350 years after Gregorian Calendar was announced, during which various countries of
Europe gradually adopted it. So far there is no satisfactory solution in sight, what is best
illustrated by a leap year problem: some sources say year 3600 needs to be dropped from leap
year list [Ulri97, p.6] to adjust for difference between calendar and the position of Earth, while
others claim it is year 4000 instead [Seid97].4

1 this was one of the most astonishing discoveries made while coping with Y2K problem
2 this is the Gregorian Calendar, introduced in 1582 by pope Gregory XIII and gradually accepted in most countries

of the world; there are hundreds of other calendar systems in existence, but these have only local or mainly
religious meaning; the idea of New World Calendar, raised in 1931 and initially supported by 32 national
committees and the League of Nations (United Nations after the World War II) was abandoned in 1955, after USA
withdrew its support because - as it was stated - it would harm the religious feelings of US citizens [WCA45,
p.147-150, USA55, p.629]

3 the Moon takes 29,53059 days to go round the Earth, what - assuming twelve months - gives the so called moon
year of 354,36706 days, while the Sun year (the time needed for the Earth to complete its run around Sun) lasts
for 365,242198 days [Gou98, p.117,110]

4 the leap year rule of Gregorian Calendar says, every year which number is divisible by 4 is a leap year, except for
those divisible by 100, which are leap years only when also divisible by 400

153

In many organisations world-wide the date of 29th February 2000 resulted in more
problems than the changeover from 1999 to 2000. This was especially true in banks, financial
institutions and also in case of control electronics. There is also a commonly known error of
Microsoft’s Excel software, which claims year 1900 was a leap year, while in fact it was not.
Microsoft says this error was initially introduced into Lotus 1-2-3 package, and deliberately
repeated by Microsoft for the sake of full compatibility with Lotus.

Year 2000 problem preparations have revealed many more calendar dates critical for IT
systems. Usually they relate to a particular hardware or software. Few most significant examples
of these dates are given in Appendix 1.

Lesson no. 2 - Standards

There are a number of date standards in existence. The most prominent example of those is
the European Standard EN 28601, which replaced former ISO 8601 standard.5 There are also US,
Canadian and Japanese date standards and British equivalent of EN 28601.6 From an IT point of
view all these standards lack one thing - they do not require four digit year field as compulsory.
They allow various date format, provided the full date can be deducted using the so called
inference rules. That allows for the year field, for that instance, being omitted altogether if
current year is to be assumed.

The only exception is the FIPS PUB 4-1 standard of US state administration. It strongly
insist on the yyyy-mm-dd date format to be used in all IT programs, data files and data
exchanges. The only problem with that standard is, its use is not compulsory and acts as an
advise only.

Since none of the existing standards were suitable to govern the year 2000 preparations, a
provisional British Standard DISC PD2000-1 was widely adopted for the purpose. Even that
needed to cope with existing practices and for that reason could not insist on one, universal
format of the date.

If however some proper and exact solution will not be found and accepted in the near
future, we will be doomed to continuous problems with date formats in various aspects of IT.

Another matter is the internal representation of the date adopted by particular software
manufacturers. There is an enormous variety of these, and they do not conform to any standards
at all.

Lesson no. 3 - windowing techniques (handling of two digit year fields)

In 1996 Palace Produce International supermarket chain experienced serious problem with
„00” year field in expiry dates of some credit cards. Every attempt to pay with such card resulted
in total failure of their new IT system and temporary shop closure. [Tate97, p.10] Since the
software company was unable to get things right, the whole affair ended up in court.7 This case

5 the Polish standard PN-90/N-01204 is an exact repetition of ISO 8601; see [PN01204]
6 these are: ANSI X3.30 [ANSI85] in the USA, FIPS PUB 4-1 [FIPS88, FIPS98] in US state administration (more

restrictive superset of ANSI X3.30), JIS X 0301 in Japan, and CAN/CSA-Z234.5-89 in Canada
7 Palace Produce won the court case and a $250 thousand compensation; the related legal material (including detail

protocols from court proceedings) was made available at http://www.2000law.com/html/lawsuits.html

154

has turned attention to much wider problem of various payment cards. Despite all the differences
in their characteristics, they had one thing in common: the year field in the date encoded on
magnetic strip was of two digits only. To change that rule it would mean replacing several
hundreds of millions of cards along with amendments to card handling software. The card
organisations decided to keep the existing cards and to adopt a software solution called
„windowing technique”. This technique is based on an simple assumption: the two digit year
numbers starting from 00 to a number called a „pivot year” are software extended with front
digits of „20”, giving together a four digit year number, e.g. 20 + 04 = 2004. All numbers from
pivot + 1 up to 99 are extended with „19”, e.g. 19 + 95 = 1995. This works fine, however there
are at least two reservations about that method:
• various pivot years were assumed for different applications8
• they only postpone re-appearance of the problem by pivot years.

The windowing techniques resulted in many applications failing to exchange date data just
after putting their year 2000 compliant versions under tests. This was simply because various
organisations adopted different pivot years.

In Poland the so called Citizen Register Number is commonly used by state administration
and businesses, among others in most payroll and tax IT systems. The birth date (two digit year)
is a vital part of this number. The State Office running that system adopted the so called Roman
System of deciding whether a particular birth date comes from 19th, 20th or 21st century. For
birth dates with year starting with „18” they add 20 to the month number (3 January 1895
becomes 032195), while 40 is added to dates with year starting with „20” (3 January 2000
becomes 034100). The dates in which the year starts with „19” got the direct month number (3
January 1995 becomes 030195). This rule is simple and easy to adopt in computer programs,
provided one knows about the very existence of such a solution. The State Citizen Register
Office says the leaflet explaining that rule is freely available on demand. The problem remains, to
request it one needs to know it does exist in the first place.

Lesson no. 4 - software development

The advent of PC in the early 80s beside other things has brought and unprecedented and
illusive easiness in creating pieces of software. The whole new generation of IT people has
grown up which does not see the need of stage wise approach to development of IT systems, not
to mention things like maintaining versions, documentation and change control. This was true
world-wide but especially in the countries like Poland where pre-PC IT culture was limited to a
very narrow group of professionals.

Out of date documentation (or no documentation at all) and lack of latest source codes were
the most commonly faced problems during year 2000 related preparations. This has put an
enormous burden upon those responsible for the appropriate projects, and imposed huge
expenditures on businesses. The advent of the Year 2000 necessitated the upgrade and
standardisation of various systems, resulting - among others - in a more cost-effective asset base.

8 in its Excel95 Microsoft assumed year [20]19 as pivot, while in Excel97 this is [20]29

155

It remains to be seen, whether they will build upon the level thus achieved, or will again plunge
into usual state of disorder.

On the positive side - the Y2K problem has turned more attention to maintaining the
software development life cycle, to IT metrics and quality measures like CMM or ISO9000
family of standards. In many organisations year 2000 problem has lead to implementation of a
method of an independent verification and validation of software systems used. All these subjects
were widely and in detail discussed in various papers dealing with year 2000 problem and its
aftermath, and also in many earlier publications. [Yourd97, Peng93, PGF96, Dods95, Offen99,
Estes97, Kaul97 and others]

Lesson 5 - The Role of Management

Management played a significant role in year 2000 preparations. It was far more to that
than only managing the things to develop and go smoothly. At the very beginning of year 2000
problem there was the so called „early denial stage”, with management denying the very
existence of the this problem and refusing to spend any money on it. [Carm98, Eddy98, BCS97,
p. 4, Lewi97, p. 17]

Printed in 1993 „Doomsday 2000” article by Peter de Jager is commonly recognised as the
first paper on the subject. [Jage93] In fact one can find a number of earlier writings, each of these
enough to raise the attention to the problem and its implications. [e.g. Beme79, Babe82]

These many early warnings were widely ignored and substituted with early denial. The
result in many organisations had a number of serious consequences: higher costs, delays in
normal development of software applications, lower reliability of systems hurriedly made Y2K
compliant and others.

On the other hand - many IT managers have demonstrated their ability to get things done
on time and (sometimes) within budget. This aim however would probably be never
accomplished without strong support from top management of the businesses. Now they know
their IT environment much better and in more detail. It was for the first time they learned how
many redundant hardware and software exists around, and how costly it is just to keep it going. A
special part of it is the „dormant software”. This is a software being part of bigger applications,
which is no longer used for some historical reasons. It is however still maintained, compiled,
backed-up and it still occupies disc space and memory of computers on which it is run.
R. Kendall, former IBM executive, has noted that in IBM data centres somewhere between 40 to
70% of the total number of applications present in software program libraries were found to be
no longer in use. [Jone97a, p.32] This example clearly shows how big are reserves of IT, and
how much it is orientated on moving forward, leaving a huge disorder and waste behind.

Conclusion

Every single lesson learned from Year 2000 Problem practice presented here could be a
subject of a separate paper. Hopefully these will be written and we will all gain even more from
this unique experience. There are also many more lessons to be learned. One of those is the IT
systems operational security. Almost every single day we are alarmed with the news about
security breaches, financial loses and successful hacking attacks. Year 2000 Problem

156

preparations revealed how low the average IT security level is, whether it’s government, bank or
manufacturing company. In many instances the makeshift updates made to the systems have
brought this level even lower. Many concerns were raised about possible time bombs being
implemented into software while getting it Y2K compliant. [see: Coop97, p.3] In the USA the
FBI found even a family with many previous links to organised crime, which established a Y2K
software company just to get hold of details of software of businesses served, and most probably
to exploit this knowledge later to its own advantage. [Gary98a]

All that means the Y2K crisis is far from over and its aftermath could appear out of a
sudden in some least expected places. After implementation change freeze period introduced in
many organisations and businesses is gradually lifted9 IT returns to normal course of events.
However one needs to stay vigil and watch carefully, remembering that - according to Gartner
Group research - each 50th line of source code of average computer program used in business
relates to calendar date10.

9 e.g. in the banks of AIB Group, WBK is member of, this ban on implementing changes to IT systems was in force

from 1 October 1999 till 7 April 2000, to cover end of 1999, 1999/2000 change over and critical dates like: first
working day of year 2000, first month closure in 2000, 28,29 February, 1 March and first quarter closure in 2000

10 each 10th line in banking software

157

Appendix 1.

Example Future Critical Dates
Hardware and Operating System Related Dates

No. Date (Time) Details Remarks
1 1980-0-0 The smallest possible file creation

date in MS-DOS operating system
Non-real date

2 1980-1-1 The smallest possible date in MS-
DOS operating system

3 2001-9-8 The time_t variable in UNIX
operating system will change
from 9 to 10 digits

Date dependent screen and printout formats will
become disorganised

4 2036-1-1 Final overflow of date register in
Unisys Series A computers

Initial date related problem was experienced by
Unisys on 1987-1-1. Another one is expected on
2003-1-1. The problem results from especially
complicated method the date is registered there (it
is a decimal number containing number of years
since 1970, followed by number of the day within
a year, converted into two byte hex integer with
sign indicated by the bit before last)

5 2038-1-19
3:14:07

UNIX operating system time
register overflow

Some systems will change onto 1970-1-1, while
others onto 1901-12-13

6 2042-9-18 IBM 360 time register overflow
7 2041-11-16 Unisys’s BTOS and CTOS

operating systems will change
into 1952-3-1 at midnight

8 2042-9-17
23:53:47

IBM 370 time register overflow This register counts the so called long seconds
since midnight 1900-1-1 (1 long second =
1,048576 sec.)

9 2071-5-10
11:56:53

AS/400 internal clock will
change to 1928-8-23

10 2080-1-1 Windows File Manager
operating with ISO-8601 date
format will subtract 100 years
from each file date

Software Related Dates

No. Date (Time) Details Remarks
1 1601-1-1 First day available in ANSI

COBOL85 calendar

2 1899-12-30 Day 0 of Borland Delphi software TDateTime variable
3 1900-2-29 Non existing date It exist (an error!) in Lotus 1-2-3 and Microsoft

Excel spreadsheets
4 2010-1-1 Time register overflow in ANSI C

library modules

5 2036-12-31 Visual C++ version 4.x maximum
date

Service Related Dates

158

No. Date (Time) Details Remarks
1 2002-1-1 Euro to be introduced as a real

money

2 2002-6-30 The end of double currency
accounts (Euro and domestic
currency)

3 2002-7-1 The end of circulation of money
other than Euro

4 2???-?-? Poland to go Euro
Source:. [Army98], [Cind98b], [Fred98], [Jone98a], [Kolb98a],[Mitr98], [Stock98b]

Literature

[ANSI85] ANSI X3.30-1985(R1991), American National Standard for information systems -

representation for calendar date and ordinal date for information interchange,
American National Standards Institute, New York, 1992

[Army98] Critical Y2K Testing Dates, http://www.army.mil/army-y2k/Testing_Dates.htm,
December 1998

[Babe82] Baber, Robert Laurance, O oprogramowaniu inaczej (original title: The Socially
Responsible Programming of Our Computers), WNT, Warszawa, 1989

[Barb98] Barber, David, Buffa, Joseph, Year 2000 Test Procedures, General Motors
Corporation, 1998

[BCS97] British Computer Society, The Year 2000 - A Practical Guide for Professionals &
Business Managers, Swindon 1997

[Beme79] Bemer, Robert, Time and the Computer, in: Interface Age Magazine p. 74-79,
February 1979

[Carm98] Carmichael, Douglass, Social psychology of Y2K: Trying to understand the denial,
http://www.tmn.com/~doug/dcnote1.htm, 1998

[Cind98b] Year 2000 Test Criteria, http://www.cinderella.co.za, 1998-7-20
[Coop97] Organising the Year 2000 date change while taking advantage of synergies,

materials of COOP BANK, Basle, Switzerland, 1997
[Dods95] Dodson, William R., Harnessing End-user Computing within the Enterprise - The

Achilles Heel of the Enterprise, Bill Dodson Associates, Boston, 1995
[Eddy98] Eddy, David, Senior Management and Y2K Denial, Westergaard Year 2000

Technology Corner, http://www.y2ktimebomb.com, 13/5/1998
[Estes97] Estes, Don, Year 2000 Strategic Project Design: Risk Assessment, Cost Control

And Automated Testing, materials of: 2000 Technologies Corporation, Lexington,
USA, 1997

[FIPS88] FIPS PUB 4-1, Federal Information Processing Standards Publication,
Representation of Calendar Date and Ordinal Date for Information Interchange,
version of 27/1/1988

[FIPS98] FIPS PUB 4-2, Federal Information Processing Standards Publication,
Representation of Calendar for Information Interchange, version of 15/11/1998,
US Department of Commerce, National Institute Of Standards And Technology

159

[Fred98] Fredrickson, Janet, Comprehensive List of Potential Y2K Problem Dates, Mitre
Organisation, http://www.mitre.org, 1998-10-29

[Gary98a] The Mafia Gets Into the Y2K Repair Business, Gary North’s Y2K Links and
Forums, http://www.garynorth.com/y2k/Detail.CFM?Links_ID=1833, 17/6/1998

[Gou98] Gould, Stephen J., Pytania o millennium, Prószyñski i Ska, Warszawa 1998
[Jage93] Jager, Peter de, Doomsday 2000, Computerworld, 6/9/1993
[Jage97] Jager, Peter de, Bergeon, Richard, Managing 00 - Surviving the Year 2000

Computing Crisis, Wiley Computer Publishing, 1997
[Jone97a] Jones, Capers, The Global Economic Impact of the Year 2000 Software Problem,

papers of: Software Productivity Research, Burlington,1997
[Jone98a] Jones, Capers, Dangerous Dates for Software Applications, version 2,

March 1998, Software Productivity Research Inc. - Year 2000 Information Center,
http://www.year2000.com/archive/dangers.html

[Kaul97] Kauler, Barry, ERUPT: pragmatic software development lifecycle,
http://www.goofee.com/erupt.htm, 1997

[Kolb98a] Kolberg, Volker, Y2K-related critical dates to test, Y2K Navigation Center,
http://privat.schlund.de/v/vk/vk_y2k03.htm, 1998-12-3

[Lewi97] Lewis, David, The Ultimate Obstacle, in: „Beyond The Year 2000”, Information
Strategy (An Economist Group Publication) Special Edition, 1997

[Mitr98] Critical Date Transitions, Mitre Organisation,
http://www.mitre.org/.../CRITICAL_DATES.html, 1998-12-3

[Offen99] Offenbacher, Steven J., Building Usable Software Through Early Testing, John
Hopkins University, http://www.apl.jhu.edu, 1999

[Peng93] Peng, Wendy W., Wallace, Dolores R., Software Error Analysis, US Department
of Commerce, National Institute of Standards and Technology (special publication
500-209), Gaithersburg, March 1993

[PGF96] Park, Robert E., Goethert, Wolfhart B., Florac, William A., Goal Driven Software
Measurement - A Guidebook, Software Engineering Institute, Carnegie Mellon
University, Pittsburgh, 1996

[PN01204] Polska Norma PN-90/N-01204, Numeryczne zapisywanie dat i czasu dnia,
Warszawa, 1991

[Seid97] Seidel, Roland, The Calendar, http://www.skeptics.com.au/journal/calendar.htm,
14/4/1997

[Stock98b] Stockton, J.R., Critical and Significant Dates, http://www.merlyn.demon.co.uk,
1998-11-29

[Tate97] Tate, Paul, The Day After, in : Beyond The Year 2000, Information Strategy (An
Economist Group Publication) Special Edition, London, 1997

[Ulri97] Ulrich, William M., Hayes, Ian S., The Year 2000 Software Crisis - Challenge of
the Century, New Jersey, 1997

[USA55] U.S. Department of State Bulletin, 11/4/1955
[WCA45] History of the World Calendar Association, Journal of Calendar Reform, tom XV,

no. 4,1945
[Yourd97] Yourdon, Edward, Why are Year 2000 Projects So Difficult and Risky?, Year 2000

Journal, vol. 1, no. 6, November/December 1997

160

161

	YEAR 2000 PROBLEM - THE LESSONS LEARNED
	Abstract
	Introduction
	Lesson no. 1 - Calendar date handling by IT systems
	Lesson no. 2 - Standards
	Lesson no. 4 - software development
	Lesson 5 - The Role of Management
	Conclusion
	Details

	Literature

