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Abstract 
 
The major aims of this work is to introduce an excellent method for data reduction in 
information systems and also in data mining, based on rough sets theory, this method capable 
of discovering the relevant features or relevant attributes which are useful for data description 
and/or prediction, and to filter out the irrelevant ones. As well as data reduction step is 
considered as very important step in data mining or knowledge discovering process. Where 
the aim of the data reduction phase is to decrease the computation (learning time) effort for 
inducing efficient classifier (major ask of the data mining tasks) as well as producing simple 
structure of this classifier. The developed system is tested with two data sets and it was 
proved its ability for decreasing the complexity required, as well as simplifying the structure 
for the built classifiers. 
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1.  Introduction 
 
We are much better at collecting data than we are at using it in a sensible way, and the 
amounts we collect outstrip our ability to use them with existing methods. The term data 
mining was first used in the late 80s to redress the balance between collecting and 
understanding data. Data mining is defined as the process of discovering interesting 
knowledge: patterns, associations, trends, shifts and anomalies from large amounts of data 
stored in databases, data warehouses, or other information repositories. Lewinson (1994) 
defines Data Mining as "analyzing historical data to find patterns that shed light on the 
present". Due to the wide availability of huge amounts of data in electronic form and the need 
for turning such data into useful information and knowledge, data mining has attracted a great 
deal of attention in the information industry in recent years ( Frawley et al. 1992;Fayyad et al. 
1996; Shapiro et al. 1996).  The field has far-reaching applications including market analysis, 
advance diagnosis, business management and decision support. Data mining had been 
popularly treated as a synonym of knowledge discovery in databases, although some 
researchers view data mining as an essential step of knowledge discovery. Fig.1 shows the 
major steps of KDD. In general, a knowledge discovery process consists of an interactive 
sequence of the following steps[1]:  

1. Data cleaning, which handles noisy, erroneous, missing, or irrelevant data, 
2. Data integration, where multiple, heterogeneous data sources may be integrated into 

one,  
3. Data selection, where data relevant to the analysis task are retrieved from the database,  
4. Data transformation, where data are transformed or consolidated into forms appropriate 

for mining by performing summary or aggregation operations,  
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5. Data mining, which is an essential process where intelligent methods are applied in 
order to extract data patterns, 

6.  Pattern evaluation, which is to identify the truly interesting patterns representing   kno- 
 dge based on some “interestingness”  measures, and  

7. Knowledge presentation, where visualization and knowledge presentation techniques  
     are used to present the mined knowledge to the user.  

 
In this work we have focused only on step 3  which is, “data selection”. Our paper is 
structured as follows. In Section 2 below we present some necessary basic facts about the 
rough set theory. Then in Section 3 we introduce a short example to expalin the ability of 
rough sets theory for attributes selection. Section 4 introduces the applied algorithm. Section 5 
presents the used data sets and the experimental results. Section 6 the conclusion. 
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Fig.1: An Overview Of The Steps Comprising The KDD Process 
 
 
2. Basic rough sets theory 
 
2.1 Information Systems 
 
Information systems [2][3] (sometimes called data tables, attribute-value systems, condition-
action tables, knowledge representation systems etc.) are used for representing knowledge. 
Rough sets have been introduced as a tool to deal with inexact, uncertain or vague knowledge 
in artificial intelligence applications. In this section we recall some basic notions related to 
information systems and rough sets. 
 
An information system is a pair A = (U, A), where U is a non-empty, finite set called the 
universe and A is  a non-empty, finite set of attributes, i.e. a: U → Va for a∈A, where Va  is 
called the value set of a. Elements of U are called objects and interpreted as, e.g. cases, states, 
processes, patients, observations. Attributes are interpreted as features, variables, 
characteristic conditions etc. Every information system A = (U, A) and non-empty set B⊆A 
determine a B-information function InfB :U→P(B× Va

a B∈
Υ ) defined by InfB(x)={(a,a(x)): a∈B}. 
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The set{InfA(x):x∈U}is called the A-information  set and it is denoted by INF(A). With every 
subset of attributes B⊆A, an equivalence relation, denoted by INDA(B) (or IND(B)) called the 
B-indiscernibility relation, is associated and defined by  IND(B)={(s,s')∈U2: for every a∈B, 
a(s)=a(s')}. Objects s,s' satisfying relation IND(B) are indiscernible by attributes from B. 
Hence xIND(A)y iff InfA (x)=InfA (y). We consider a special case of information systems 
called decision tables. A decision table is any information system of the form A= (U, A ∪ 
{d}), where d∈A is a distinguished attribute called  the decision. The elements of A are called 
conditions. One can interpret a decision attribute as a kind of classification of the universe of 
objects given by an expert, decision-maker, operator, physician, etc. Decision tables are called 
training sets of examples in machine learning. The cardinality of the image d(U)={k: d(s)=k 
for some s∈U} is called the rank of d and is denoted by r(d). We assume that the set Vd of 
values of the decision d is equal to {1,...,r(d)}. Let us observe that the decision d determines 
the partition CLASSA(d)={X1 ,...,Xr(d)} of the universe U, where Xk ={x∈U: d(x)=k} for 
1≤ k ≤r(d). CLASSA (d) will be called the classification of objects in A determined by the 
decision d. The set Xi is called the i-th decision class of A. 
 
2.2 Reducts 
 
Any minimal subset B⊆A such that IND(A)=IND(B) is called a reduct in the information 
system A. The set of all reducts in A is denoted by RED(A). Let A be an information system 
with n objects. By M(A), we denote an n×n matrix (cij) called the discernibility matrix of A 
such that, cij  = {a∈A: a(xi)≠ a(xj)} for i,j=1,...,n. A discernibility function fA for an 

information system A is a boolean function of m boolean variables ,..,  corresponding to 
the attributes a

a1

_
am

_

1 ,...,am respectively, and defined by  fA ( a1 ,.., am ) = ∧{∨ cij  : 1≤j<i≤n, cij ≠∅}, 

where ={ : a∈ }. It can be shown that the set of all prime implicants of fcij

_
a
_

cij A  determines 
the set RED(A) of all reducts of A (i.e. ∧...∧  is a prime implicant of fai1 aik A. iff { ,…, 

}∈RED(A). One can show that the problem of minimal (with respect to the cardinality) 
reduct finding is NP-hard. In general the number of reducts of a given information system can 
be exponential with respect to the number of attributes. Nevertheless, existing procedures for 
reduct computation are efficient in many practical applications and for more complex cases 
one can apply some efficient heuristics. 

ai1

aik

 
2.3 Set Approximations 
 
If A = (U, A)  is an information system[4], B∈A is a set of attributes and X⊆U is a set of 
objects then the sets {s∈U: [s]B ⊆X} and {s∈U: [s] B ∩ X≠∅} are called B-lower and B-upper 
approximation of X in A, and they are denoted by BX  and BX , respectively. The set BNB (X) 
= BX - BX ,  will be called the B-boundary of X. These concepts will be shown in Fig. 1. When 
B=A we write also BNA (X) instead of BN (X). Sets which are unions of some classes of the 
indiscernibility relation IND(B) are called definable by B. The set X is B-definable iff 
BX = BX . Some subsets (categories) of objects in an information system cannot be expressed 
exactly by employing available attributes but they can be roughly defined. The set BX is the 
set of all elements of U which can be with certainty classified as elements of X, having the 
knowledge represented by attributes from B; BX  is the set of elements of U which can be 
possibly classified as elements of X, employing the knowledge represented by attributes from 
B; set BNB (X) is the set of elements which cannot be classified either to X or to -X having 
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knowledge B. If  X1 ,...,Xr(d) are decision classes of A then the set, { BX BXr d1∪ ∪... ( ) } is called 
the B-positive region of A and is denoted by POSB(d). If C⊆A than the set POSB(C) is defined 
as POSB(d)  where d(x)={a(x):a∈C} for x∈U is an attribute representing the set C of 

attributes. If B,C∈A, then B→A,k C where k = ( )POS C
U

B denotes the partial dependence of C 

on B. One can measure the importance of an attribute a with respect to the decision d in a 
given decision table as ⎥ POSa(d)⎥  / ⎥ U⎥. Vagueness of a set (category) is due to the 
existence of a boundary region. The following qualities of the lower approximation of X by B 
in A and upper approximation of X by B in A were introduced in: 

  ( )γ
B

X
BX
U

=    and   ( )γ B X
BX

U
=  

Thus, the quality of lower approximation of X by B in A is the ratio of the number of all 
certainly classified objects by attributes from B as being in X to the number of all objects in 
the system. ( )γ

B
X  is intended to capture the degree of completeness of our knowledge about 

the set X. It is a kind of relative frequency. The quality of upper approximation of X by B in A 
is the ratio of the number of all possibly classified objects by attributes from B as being in X 
to the number of all objects in the system. It is also a kind of relative frequency. One can also 
consider another measure of the set vagueness with respect to a given set B of attributes: 

( )αB X
BX

BX
=  , If A=(U,A∪{d}) is a decision table then we define a function 

δA(x):U→P({1,...,r(d)}, called the generalized decision in A, by  δA(x) = {i: ∃x' ∈U x' IND(A) 
x and d(x)=i}. A decision table A is called consistent (deterministic) if ⏐δA(x)=1⏐ for any 
x∈U, otherwise A is inconsistent (non-deterministic). It is easy to see that a decision table A 
is consistent iff POSA (d)=U. Moreover, if δB = δB’ then POSB (d)=POSB’ (d) for any non-
empty sets B,B'⊆A. A subset B of the set A of attributes of decision table A = (U, A∪{d}) is a 
relative reduct of A iff B is a minimal set with the following  property :  δB = δA. The set of all 
relative reducts in A is denoted by RED(A,d). 
 
3. Expalainatory Example  
 
Assume a dataset D viewed, as a table where attributes are columns and objects are rows, as 
in Table 1. U denotes the set of all objects in the dataset. A is the set of all attributes. C is the 
set of conditional (or input) attributes, and D is the set of decision attributes. U = {0, 1, 2, 3, 4, 
5, 6, 7}, A = {a, b, c, d, e}, C = {a, b, c, d} and D = {e}. f(x, q) denotes the value of attribute 
q ∈  A in object x ∈  U. f(x, q) defines an equivalence relation over U. For instances: 
Ra = {{1, 7}, {0, 3, 4}, {2, 5, 6}}, Rb = {{0, 2, 4}, {1, 3, 6, 7}, {5}}, Rc = {{2, 3, 5}, {1, 6, 
7}, {0, 4}}, Rd = {{4, 7}, {1, 2, 5, 6}, {0, 3}}, and Re ={{0}, {2, 4, 5, 7}, {1, 3, 6}}. Assume 
a subset of the set of attributes, P ⊂  A. For instance, if P = {b, c}, objects 0 and 4 are 
indiscernible; 1, 6 and 7 likewise. The rest of the objects are not. This applies to the example 
dataset as follows:  
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 X∈U a b c d e 
0 1 0 B B K 
1 0 1 1 1 Z 
2 B 0 0 1 Y 
3 1 1 0 B Z 
4 1 0 B 0 Y 
5 B B 0 1 Y 
6 B 1 1 1 Z 
7 0 1 1 0 Y 

      Table 1 
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  Fig. 2: The Lower And Uppe
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U/IND(P) = U/IND(b)⊗U/IND(c) =  
= {{0, 2, 4}, {1, 3, 6, 7}, {5}}⊗ {{2, 3, 5}, {1, 6, 7}, {0,
4}}= 
= {{0, 2, 4} Ι  {2, 3, 5}, {0, 2, 4} Ι {1, 6, 7}, {0, 2, 4} Ι  {0,
4}, · · ·  {5} Ι  {0, 4}}= {{2}, {0, 4}, {3}, {1, 6, 7}, {5}} 
If P = {a, b, c}, then, similarly:  
U/IND(P) = U/IND(a)⊗U/IND(b)⊗U/IND(c) 
Assuming P and Q are equivalence relations in U, the positive,
negative and boundary regions are defined as (POSP (Q),
NEGP (Q) and BNP (Q) respectively) as: 
 
Fig. 1 illustrated these concepts. For example, assuming: 
 P = {b, c} and Q = {e}: 
POSIND(P)(IND(Q)) = Υ {{}, {2, 5}, {3}}= {2, 3, 5} 
{0, 4}, {2, 0, 4, 1, 6, 7, 5}, {3, 1, 6, 7}}= {}. 
, 5} = {0, 1, 3, 4, 6, 7}. 
ncy of a set Q of decision attributes on a set of conditional 

), the complement of γ gives a measure of the contradictions in 
aset. If γ = 0, there is no dependence; for 0 < γ < 1, there is a 
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This shows that, of the 8 objects,
only 3 can be classified into the
decision attribute e, given
conditional attributes b and c. The
other 5 objects (0,1,4,6,7)
represent contradictory
information. It is now possible to
define the significance of an
attribute. This is done, by
calculating the change of
dependency when removing the
attribute from the set of
considered conditional attributes.
Given P, Q and an attribute x∈P:
ency, the more significant x is. For 
 γ{a,b}({e}) = 4/8, γ{b,c}({e}) =  3/8, 
o evaluate the significance of the 
 σP (Q, b) = 0, σP (Q, c) = 0, this 
icance of 0.125, while attributes b 
y information significant for the 
oving attributes that have no 

a dataset may have more than one 
 {X: X  C, ⊆ γC(D) = γ X(D)}. It is 
promise with a set of conditional 
al set, C - it will always attempt to 



reduce the attribute set while losing no information significant to the classification at hand. To 
force the reduct to be the smallest possible set of conditional attributes, the minimal reduct. 
Rmin  R is specified as the set of shortest reducts: Rmin = {X : X ⊆ ∈  R, ∀Y∈R, || X ||≤Y}. 
 
4. The Developed Algorithm  
 

Procedure  select the best structure of rule generator system for data mining problems. 
Input     :The Information System (decision table). 
Output : Best rules for the data mining problems and accurate performance. 
Begin: 
Process1:  

1.1 Input the decision table. 
1.2 Reduct the data set (features selection): (its  out put is reduced decision table). 

    Process 2:   
2.1 Construct the rule generator according to the reduced decision table. 
2.2 Test the constructed rule generator system. 
2.3       If the total accuracy of the system is well and acceptable then End  

else goto process 2.2. 
    End. 
 
5. The Data Sets And Experimental Results 
 
Experiments have been performed on data sets of the PROBEN1 benchmark set of real-world 
problems [5] originated from the UCI Machine Learning Repository [6]. Table 2. shows the 
different data sets used for the experiments. The first database, known as cancer, addresses a 
very important problem in the medical domain, the breast cancer diagnosis. The purpose is to 
find intelligible rules to classify a tumor as either benign or malignant. It is constituted by 699 
examples of which 458 are benign and 241 are malignant examples. Each instance contains 10 
integer-valued attributes of which the first is the diagnosis class, while the other nine 
attributes are related to cell descriptions gathered by microscopic examination. The second 
data set, designated as glass, classifies glass types. It is constituted by 214 instances, 6 
classes, and 9 attributes related to chemical analysis of glass sprinters plus the refractive 
index. Table 2. shows these data sets and their description. While Table 3. shows the 
experimental results for the attributes reductions, and  the system accuracy with  rule 
generation using See 5. 
 

 
 
 
 
 

  Table 2: The Data Sets Used And Their Descriptions. 

Problem Attr Con Dis Classes Sampls Training S Test S 
Cancer 9 0 9 2 699 525 174 
Glass 9 9      0 6 214 161 53 

 
 

 
 
 
 
 

 

 
 
 
 
Table 3: Experimental results for attributes reduction and systems accuracy using See 5.

Data set # of features Selected features Rejected features accuracy 
Cancer 10 5 4 93.1% 
Glass 9 4 5 92.4% 
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6. Conclusion  
 
From these results shown in Table 3, filtering attributes with rough set data analysis, which 
improves the strength of the results  (i.e.the accuracy of the rules). It was found that we could 
make simple classifiers and less complex in both of time and space, using rough sets as data 
reduction method. 
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