
 123

SUN'S APPROACHES TO AN INTERACTIVE DESIGN

Ing. Josef Pavlíček Ph.D,
Sun Microsystems, Evropská 33e,

Praha 6 Dejvice 165 00.

Josef.Pavlicek@sun.com

ABSTRACT

 To develop user friendly software is the goal for a lot of software companies. By the

term “user friendly” we mean smart software, which has a high focus on usability and

ergonomics. The software has to have a high level of Quality. Exists many approaches to

achieve the desired quality. This article talks about the approaches the Interaction designers

use in the Software eXperience Design Team of Sun Microsystems. The author evaluates

known approaches and suggests a suitable way to build and develop the NetBeans Java

development tool with a high focus on integration, usability and ergonomics.

KEYWORDS
User Interface, User Interaction, Design, Use Case, Scenario, Prototype, Quality

Introduction

 I have been working for Sun Microsystems for three years. I am a member of the

Software eXperinece Design Team. The goal of this team is to do the UI design as well as

possible. If we want to be good in this subject, we have to study a lot of materials. In addition

to we have to follow the International standards like ISO/IEC 25062, ISO/IEC 9000. The

discussion in the scientific conferences is necessary to. And that is the reason why I wrote

this paper.

User Interface and Interaction design

 The UI (User Interface) is the gate into the computer world. If the gate is wrong and

the user has a problems opening it, he/she cannot enter. The user feels uncomfortable and

he/she can get angry. That is the first typical mistake in UI. Alan Cooper says [Alan Cooper]

“the user cannot feel stupid”. If we want to make good software, we have to keep this note in

mind.

Interaction versus Interface design

 Alan Cooper also says [Coo99a] “I prefer the term Interaction design over the term

interface design because interface suggests that you have code over here, people over there

and an interface in between that passes messages between them”. This is a good approach.

The UI is crucial for the first user experience with the software. The user evaluates the

 124

software according to his/her first experience. If the software looks smart the user feels well

and wants to try to use it.

 But UI is not everything. UI can help the user to start to use the software. If the

software is intuitive and the user doesn't have problems using it, everything is OK. If not, the

user probably has “Usability Problems”. The software has to be intuitive and user friendly.

This behaviour we can call Usability.

 If we join the User Interface and Usability

together we can speak about User Interaction

design.

 Cooper says [Coo99a] “Interface design

only tells how to dress up an existing behaviour.

For example, in a data reporting tool, interface

design would eliminate unnecessary border and

other visual clutter from a table of figures, color code important points, provide rich visual

feedback when the user clicks on data elements, and so on. That is better than nothing, but far

from sufficient”.

 Evidently we have to consider the “behavioural design” too. This kind of design tells

us how the elements of the software should act and communicate. Cooper says [Coo99a] “We

can go deeper into what we call “conceptual design”, which considers what is valuable for the

users in the first place. Conceptual design might tell you that examining a table of figures is

only an incidental task – the users' real goal is spotting trends, meaning that you don't want to

create a reporting tool at all, but a trend–spotting tool. To deliver both power and pleasure to

users, you need to think first Conceptually, then in terms of Behaviour, and last in terms of

Interface”.

Software User Interface, Usability and Interaction specification

 If we want to realize new functionality for the NetBeans Java programming tool, the

Interaction Designers have to develop

Software User Interface, Usability and

Interaction specification. We call it “UI

Specification” and the reader can read a

lot of specifications on Sun's web page

http://ui.netbeans.org .

This UI specification has three main

parts.

● UI specification Use Cases

● UI specification Scenarios

● new Software specification

Illustration 1: User Interaction

Illustration 2: Software UI specification

 125

UI specification Use Cases

 Use Cases are very informative for the Interaction design. We are using them because

they show the users' main work flow. On the basis of the Use Cases we are designing the

functional elements of the UI. The Use Cases tell us which functionality has to be accessible

from the first window. Besides that they help us to determine the appropriate level of

complexity for the software.

 Each part of the software product has a different level of complexity. The welcome

screen has a very low level. It's used for new users, who don't know the software and have to

feel comfortable. The Database browser has a high level of software complexity. It's designed

for advanced users.

 Also, we can use the number of Use Cases to predict software complexity. For this

prediction we are using artificial intelligence – the neural network PETRA.

UI specification Scenarios

 Scenarios tell us how the system will answer the user's needs. Scenarios are usually an

inverted view of Use Cases. Scenarios show us the first view of functionality of the software.

They are also very useful for checking software functionality. Use Cases tell us what the user

wants. Scenarios tell us how the software allows it.

 Scenarios can also be used for software complexity prediction.

New Software specification

 New software specification is the biggest part of UI specification. User Interface

design depends primarily on this part. Use Cases and Scenarios tell us what the user wants

and how the system allows it – we call this Usability. New software specification tells us how

the software has to look. This part also describes in detail the software behaviour. It

represents the main part of Interaction design.

Note:

 We cannot say “The Interaction design depends on the Software specification part

only”. Of course not. UI specification make sense only if is it complete (with Use Cases,

Scenarios, Software Specification). This includes Usability, User Interface, User Interaction

and Reliability, Functionality and other Software Quality attributes [Ras00a].

 126

 The feature software usability is dependent on this part. The number of usability

problems depends on the quality of UI design in the UI specification. I have gained this

knowledge during my human interface design work for SUN.

I can say (in general):

● The software complexity depends on the number of Use Cases.

● The software Usability depends on the quality of User Interface design placed in the

New Software Design chapter in the UI specification.

● User centred Interaction design joins both.

Analysis of the current situation

Number of Use Cases

 The method Use Case point by Gustav Karner [Kar93] uses the Use Cases as the basis

of software functionality. Karner designed the Use Case point method according to this idea.

This approach is not new. The Function Point method used a similar approach in the 1980ties.

Function point is designed for structured programming. This approach is old now. Today we

are using Object oriented programming. Generally – Use Case point is similar to Function

point but for Object oriented programming.

 Unfortunately Karners' approach doesn't make sense for software prediction from the

point of view of the theory of measurement [Van99],[Lac01]. On the basis of this fact I

designed an alternative method. In this method are prediction steps which are based only on

subjective classification given to solve the problems with the artificial intelligence - neural

networks.

 127

The quality of User Interface design

 We have a lot of possibilities how to do the User Interface design. We can use three

[Pav05] elementary approaches. Each approach has some pluses and a few minuses.

● ASCI design,

● Graphical design,

● Functional prototype.

ASCI design

● Pluses

� is easy for developing,

� shows position of buttons and functional elements (in comparison with text

description).

● Minuses

� doesn't shows colours (it is

useful because colours can give

the user a feedback. For

example, inactive icon is grey),

� the developer has to think about

the colour form and it takes

him/her the time for

programming,

� we don't see the graphical

problems (wrong colours, state

of functional elements etc.),

� doesn't show the Interaction

design.

Summary:

 We can say “the saved time during the software UI specification, we have to loose

during the implementation process with the developers”. This kind of the design is useful for

an easy design, where is a low focus on the usability and interaction. For example the

Dialogues like “ The field NAME is empty, do you want to close the dialogue?”.

Illustration 3: ASCI design

 128

Graphical design

● Pluses

� can be finished in

the short time,

� shows position of

buttons and

functional elements,

� shows colours and

the UI,

� shows the

developer, how the

software has to

look.

● Minuses

� Takes more time

than ASCI design,

� doesn't show the

Interaction design.

Summary:

 I can say: “this type of design is the best in general”. We can use it in the wide area of

software tools. It shows all details in the high quality. We can imagine the interaction design

much better than in the ASCI design. It is much cheaper than a functional prototype.

Illustration 4: Graphical design

 129

Functional prototype

 We can use each programming language, or some special language for modelling), for

working prototype.

● Pluses

� shows position of buttons and functional elements,

� shows colours and User Interface design,

� shows the developer, how the software has to look,

� shows Interaction design

● Minuses

� is expensive,

� takes a lot of time

� is hard to change it, sometimes the designer is solving the problems during

programming the prototype and is not solving the Interaction design problems.

Summary:

 The working prototype is useful if we need to test interaction design primarily. In the

case when we are not able to imagine it. This prototype is the best for testing. It's expensive

and takes a lot of time.

Conclusions

 It is useful to do the Software UI specification before we start to develop some

software. We can save a lot of time, which we will need for tuning, if we will build the

software without UI specification. In general to have some Software UI specification is useful

for planning and managing the software develop process. On the basis of Use Cases we can

approximate the software complexity. This is very important for manager decision type:

realize the software, how much it will cost and how long it will take to build it.

For the purpose of the software complexity approximation I developed a special neural

network system. This system has the name PETRA and I will talk and show it during my

presentation.

 130

References:

• [Coo99a] Cooper A., The intimates are running the asylum, pp.0-672-31649-8.

• [Ras00a] Raskin J., The Humane Interface,pp. 0-201-37937-6.

• [Pav05] Pavlíček J., Objekty 2005, pp.80-248-0595-2.

• [Van99] Vaníček J., Měření a hodnocení jakosti informačních systémů, pp 80-213-

1206-8.

• [Lac01] Lacko B., Aplikace metody RIPRAN v softwarovém inženýrství, Sborník

celostátní konference Tvorba Software Ostrava.

• [Kar93] Karner G., 1993, “Metrics for Objectory”. Diploma thesis, University of

Linköping, Sweden. No. LiTHIDA - Ex-9344:21

