
177

ERLANG’S ACTORS CONCURRENCY MODEL IN JAVA

Zbyněk Šlajchrt
Vysoká škola ekonomická v Praze

xslaz900@isis.vse.cz

Keywords

Concurrent programming, scalability, Java, Chaplin ACT, Erlang, Actors model

Introduction

Today one or more multi-core processors may equip even an ordinary home computer. The

increasing demand for the newest 3D games, which are so popular among teenagers, or for

the multimedia software pushes the prices of the powerful hardware continuously down. Not

only a family budget may profit from the affordable prices of the multi-processor hardware,

but also enterprise clients may buy high-performance hardware for a reasonable price and

begin to require that their software utilize the underlying powerful hardware as efficiently as

possible. At this point we are entering the world of enterprise applications where the Java

language is well established. So it is legitimate to ask question how Java fits to developing

concurrent applications and which tools it provides.

The Java’s standard way to concurrency

The Java language uses a concurrency model similar to those in the most popular languages.

It is based on locks that control access to shared mutable state. Multiple parallel executions of

code are called threads. Java provides a small set of built-in language constructs, which a

programmer uses to control threads’ access to the shared resources. Although simple and

lightweight in its nature, this model embarks a heavy load on the programmer’s shoulder

because of the constitution of the programmer’s mind, which is largely single-threaded. This

model makes developing concurrent programming rather challenging than easy and requires

high imagination and experience. Inexperienced programmers are often unaware of the

pitfalls lurking in the illusory simplicity of the model and their programs annoy users by

unpredictable deadlocks and weird behaviour caused by race conditions.

The above-mentioned problems led the Java language designers to decision to incorporate a

third-party library to Java 5. Doug Lea, who had developed this library, designed it to make

the programming of concurrent applications more high-level and safer [1]. This library

contains a number of abstractions like mutex, semaphore, queue, executor, future, channel

and others that have their counterparts in the known and proven concepts used in the domain

of concurrent applications.

The new concurrent library caused a big leap in the development of concurrent applications in

Java and a number of enterprise application servers use it for implementing concurrency.

However, one thing is to provide a high-level library allowing us to write safer concurrent

programs, and other thing is to write programs that scale. In other words, we need that the

program performs better when it runs on a computer equipped with more processors. Adding

processors should lead to better performance of our program. The key characteristic of well-

scalable programs is the ability of parallelization. The program must be written in a way that

its parts can be run in parallel. The percentage of the code, which cannot be parallelized,

178

negatively correlates with the maximum speedup, which can be achieved by adding more

processors. Amdahl’s law expresses this finding.

Amdahl’s law
This law quantifies an expected improvement of an overall system in the case that only a

certain part of it can be improved. In concurrent programming it is used to predict the

maximum speedup when adding more processor power.

If P is the proportion of a program that can be made parallel (i.e. benefit from

parallelization), and (1 − P) is the proportion that cannot be parallelized (remains serial),

then the maximum speedup that can be achieved by using N processors is [2]

1

1− P()+
P

N

One can easy conclude from this equation that when the number of processors (N) is

increasing to infinity the limit of the formula becomes
1

1− P()

For example, if a program runs 10 hours in a single-threaded environment and there is 1-hour

subroutine, which cannot be parallelized, then the maximum speedup that can be achieved by

adding more processors is 10x (P=0.9).

The conclusion is that our programs do not scale above some limit. The bigger part of the

application cannot be parallelized the lower the limit is. The question is whether there is an

alternative, which would naturally lead to designing programs that could be more capable of

parallelization. The answer is yes and the alternative is the Actors model as implemented in

the Erlang language.

Erlang’s actor concurrency model
The Actors model became famous thanks to its implementation in the Erlang language. This

language was invented in 1986 at Ericsson and the motivation for its birth was an urgent need

for a language in which engineers would design software for the Ericsson’s high-speed

telephone switches. These programs had to be extremely robust and fast, as the switches must

run nonstop. Erlang fulfilled all these requirements mainly because of its concurrency model,

which has become known under the name Actors model. So, how does this model work?

The main idea behind is that whole system consists of so-called actors, which interact

between themselves by means of posting immutable messages. An actor can be viewed as a

small service performing asynchronous operations in response to requests posted by other

actors. An important feature, which significantly influences robustness and stability, is that

the actors never share the state and the messages are immutable. Thus race condition never

happens.

Another key design feature is that each actor owns a mailbox to which other actors post

messages. Actors cannot be invoked otherwise then through the mailbox. Once a message

arrives to the mailbox the sleeping actor wakes up and performs an action according to the

pattern matching the incoming message.

Because of such nice properties it makes sense to think about incorporating the Actor model

to other languages. Some languages did so and for example Scala has a built-in support for

179

this concurrency model. Java does not provide itself any construct allowing such

programming, however, only few attempts have been made so far trying to provide a

framework for the Actors model [3, 4]. The Chaplin ACT software offers such a framework.

Actors in Chaplin ACT
Chaplin ACT is a Java class transformer, which modifies classes in such a way that the

classes’ instances can form complex composites with minimal coupling. Using this software a

programmer is given a tool allowing him to use several modern language concepts like mixins

and/or aspect oriented programming. From the programmer’s point of view it is seen as en

extension to the Java language. Among other features it offers an Actors model framework,

which naturally fits to the philosophy of Chaplin ACT [5].

In Chaplin ACT a number of components can form a composite. The interaction between

components within the composite is based on messages, which can be either synchronous or

asynchronous. Once either message arrives to a target component the behaviour differs

according to whether the component is or is not an actor. If the receiving component is not an

actor then a corresponding method is directly invoked on the component. However, if a

component is an actor then instead of method invocation the message is stored into the actor’s

mailbox.

A component becomes an actor by annotating its class with @Actor annotation:

This annotation instructs the Chaplin ACT to enhance the ActorA class by the mailbox.

Furthermore, it causes, that an incoming message is stored to the mailbox instead of direct

component invocation.

After an actor is spawn it pauses until a message appears in the mailbox. The actor invokes

$receive() operator and passes a message handler:

The message handler can be an instance of java.lang.Object and may define an

arbitrary number of methods. These methods represent handlers of individual messages. The

name of a method corresponds to the name of a message and the method’s arguments

correspond to the message attributes. Invoking $receive publishes information about

messages processed by the handler to the composite so that it can route messages here. Once a

message appears in the mailbox and fits to one of the published methods the matching method

is invoked and the $receive operator returns. After that all previously published methods

are suppressed.

If a component wishes to post a message to another component it declares the message as an

abstract method annotated with @FromContext. The name and arguments convention

follows the same rule as in the case of message handler method:

180

Chaplin ACT silently implements this abstract method and when the method is invoked it

sends a message to the routing infrastructure of the composite:

As soon as the composite’s router receives a message it must select the target component or

components. In this case that no routing metadata are provided the target component is any

component that publishes the matching method. Let’s examine the behaviour on the following

example.

Ping-pong example

This is a classic example used for explanatory purposes when dealing with the Actors model.

In this scenario there are two actors: the ping player who sends the ping message and the pong

player who sends the pong message after it receives the ping. There is also a coordinating

actor who initiates and finishes the game. The communication between the actors is depicted

on the following picture:

After N ball switches the Ping player broadcasts the finish message, which is received by both

Pong player and Coordinator.

The Java code for Ping player is as follows:

181

I have not explained yet the function of the @Role annotation. By annotating a component’s

class by this annotation the component is automatically assigned the role when inserted into a

composite. The role in this case matches the Ping class’s name. It is a routing metadata that

can be used for targeting messages within the composites. The Ping class declares two

outbound messages ping and finish, which can be sent from this class to other

components in the same composite. The @FromContext annotation at the ping abstract

method has the property role set to the Pong class. It is a hint for the message router to

deliver the message to the component playing the role Pong in the composite. The method

spawn starts the game by sending the ping message and entering into the receive mode where

it waits until the pong message returns. After that the spawn method calls itself to continue

the game.

The Pong class represents the second player:

182

This class is also annotated with @Actor and @Role annotations that I explained above. The

Pong component declares the pong message, which is sent back to the Ping component as a

response to the ping message. The spawn method activates the actor and publishes the ping

and finish message handlers. The mutation of the $receive operator used here returns

an iterator that provides a sequence of received messages. This $receive operator takes an

instance of the Receiver class which provides the instance with a handful of methods

controlling the iteration. The loop continues until the finish message is received. The

handler of the finish message calls the finish iteration control method on the super class

that instructs the iterator to stop the iteration. The ping message handler simply prints out

the message and replies by sending the pong message to the Ping player.

The Coordinator initiates both players and waits until the Ping component emits the finish

message.

183

The Coordinator declares two asynchronous spawn messages. The first one is sent to the

Ping component and the second one to the Pong component. As the both messages are sent

asynchronously the spawnAll method is not blocked when the spawn methods are

invoked. After spawning the players it enters into the receive mode where it waits until the

finish message is received.

The following code shows how the composite is assembled:

The $ operator is a statically imported method that is used in Chaplin ACT for instantiation of

components. All components’ classes in this example are abstract and they cannot be

instantiated directly by means of the new operator. The $$ operator fuses all components into

a composite. From this moment all components live together in the context of the composite

and they may interact by sending messages to each other. The game starts by calling the

spawnAll method. The number of switches is 5.

CONCLUSION

The goal of this article was to present an alternative approach for developing scalable

concurrent applications in Java. The Actors model became famous thanks to its

implementation in the Erlang language and its successful application in the software for the

high performance, robust and non-stop running systems. Java itself does not provide any

built-in support for the Actors model; however, with the help of the Chaplin ACT it is very

straightforward to incorporate the Actors model in a program written in Java.

184

REFERENCES

[1] Lea, Doug (1999). Concurrent Programming in Java: Design Principles and Patterns.

Addison Wesley. ISBN 0-201-31009-0.

[2] http://en.wikipedia.org/wiki/Amdahl%27s_law

[3] http://www.javaworld.com/javaworld/jw-02-2009/jw-02-actor-concurrency1.html

[4] http://www.javaworld.com/javaworld/jw-03-2009/jw-03-actor-concurrency2.html

[5] http://www.iquality.org/chaplin

