DECOMPILATION IN .NET FRAMEWORK

PaveIVFiaIa, Miroslav Virius
FIFICVUT v Praze, fialapa5@fjfi.cvut.cz

ABSTRACT:
This article explains the process of decompilatioNET Framework and introduces the
design of abstract syntax tree representation in.XM

KEYWORDS:
MSIL, abstract syntax tree, assembly decompilatidvil. representation

INTRODUCTION: EXISTING SOLUTIONSAND MOTIVATION

There are decompilation programs for the .NET Fraank. One the famous decompilation
tool for the .NET is the Lutz Roeder’'s .NET Reflek[5], now distributed by the RedGate
Company; this tool is paid since 2011. The Dis#ritisted by the NETdecompiler.com
Company [6] is paid, too. The Salamander .NET Deautandistributed by Remotesoft [7] is
paid as well. Algorithms used by these tools werepublished.

Our aim is to develop a flexible tool for the degmlation based on XSL transformation of
the abstract syntax tree (AST) and to make theridgos available to public. The program
shall be able to read the user-defined transfoomatescription for any programming
language and to produce the source code accomlithgsttransformation.

In the first part of this article, we briefly expiethe algorithm for the creation of the AST
representing the decompiled assembly [1-4]. The pant presents our design of the XML
representation of the AST.

ASSEBMLY TRANSFORMATION TO THE ABSTRACT SYNTAX TREE

The basic idea of the decompilation of the .NETeaddy is to create the abstract syntax tree
according to the information stored in the assembly to transform this tree. Tools from
Microsoft .NET Framework can be used to simplifg ttecompilation process. The classes
from System.Reflection andSystem.Reflection.Emit namespaces are very useful
for extracting the assembly content. There arerham ways of the decompilation. The
whole assembly can be processed and stored inSfiecAonly the sketch of the assembly
(assembly attributes, modules, types, type's fiatdsmethods) is stored and the rest of the
assembly is processed according to the incomingestg and added to the stored tree. We
will use the second way.

At the beginning of the decompilation, the assentblpaded by the method provided in the
System.Reflection.Assembly class and the root element of the whole XML docuoinne
created. Now, we can obtain both information altemegembly declaration, the module list
which the assembly consists of, referenced extassgemblies and used resources. First, all
of assembly attributes are added to the XML docupeerd then resources and references are
added to the XML document. Last, the module listhtained visGetModules() method.

Each module is processed in the following way.tFtree list of global methods is obtained
from the module. Next, the list is parsed into diedicated XML elements. The whole content
of the module has to be member of some namesgabe. method's namespace doesn't exist
in the AST, it's created and added to the modMXI®lk representation. Then, method element
is added to the namespace element. After the glab#iods, the list of types is got from the
module. The type element is created now.

27

Now, the base type and the list of implementediates are obtained. The base type can be
only one so it's added as the child element. We baveduce the interface list before adding
the interfaces to the XML because we want to shohly imterfaces implemented in this type
and not the ones implemented in the base type.rétisced list is inserted to the type XML
element then. Moreover, the type can have genaranpeters thus they are stored in the
dedicated element. Then the most important partiseofype are still waiting to be processed
— fields, properties, methods and events. ThegareiaGetMembers() method and they

are parsed to the XML elements according to tlypie t

For the field, the full element is created. For pheperty, the element with the full

information about the name, the attributes angirameters is created. Then only the sketch
of the property member is created. That meansothigitthe name and the type are stored.
Similar situation is for the method — only the skeis created. The method element has
almost its full content except the method body.ttement is constructed after any
incoming request. Event for the type has the flllLXelement. Now, the first stage is

finished and the basic AST is done.

Next step is the evaluating of the method nodesrdatg to the incoming request. If the
request is for the non-evaluated method, it is ggeed. The method node contains everything
important except the method body. Since MSIL isilsimo the assembler, function invoking
with the input parameters and returning value isedoy stack (and many other operation use
stack too). Hence the stack operations have tinb@ated as they are done in the .NET
virtual machine. Method body has a special cssem.Reflection.MethodBody

Using this class, it is possible to get three inguarthings: maximum stack size, local
declarations (only the list with variable typesivatit names) and an array of bytes
representing the code. Now, we are ready to pasagh the byte array. We are at the
position 0 at the beginning. The first byte is read if the value is OXFE, the second byte is
read immediately. According to the byte value,dperation and its operand are recognized.
If the operand is given in the byte array, it isde@nd the position is increased by the
specified value for this operation and the stackrapon is simulated. We have prepared the
state machine to determine constructions accotdinige operation sequences. When the
stack work is done, the state is refreshed accgrdinhe operation type, and when the final
state is reached, appropriate XML element is cceatel added to the method body element.
The whole method body is processed this way.

ABSTRACT SYNTAX TREE REPRESENTATION IN XML
We designed the abstract syntax tree representatitve XML according to the analysis of
the permitted constructions in MSIL.
The first and basic element is assembly element.
<assembly name="">
<assemblyDeclaration name="" value="" />

<module />

</assembly>

This element has only thame attribute, which contains the name of the analyssgmbly.
TheassemblyDeclaration child elements represent the information abouagsembly
declarations (i.e. assembly version, copyrighf) eddext,module elements contain the

28

information about the modules of the analysed abBerhast two elementsesource and
reference , are optional and they hold the resources usededfatenced external
assemblies.

<module name="">
<namespace name="">
<method />
<type />
</namespace>

</module>

Structure of thenodule element is simple — each module has name (attritaue) and the
whole module content has to be member of some r@EanesFor the namespace, there is
elementhamespace with only one important attribute — its name. histelement, there are
method child elements for any method declared outsidengftype andype elements for

types declared in the module. Both type and meé#h@thent can occur more times.

<type name="">

<extends name="" />

<implements name="" />

<genericParams />

<field />

<property />

<method />

<event />
</type>

For the type, it's important to know its namarfie attribute in the roaype element). First
two child elementsxtends andimplements , contain the information about the base type
of this type and about interfaces which are implet@e in this typeimplements attribute
can occur more times. Next, it's important to hgeeeric parameters (if there is any) in

genericParams element, field, properties and methods of the {ypéhefield

property , method elements).

<genericParams>
<genericParam type="" name=""
<genericParamAttribute name="" />

</genericParam>

</genericParams>

The elemengenericParams contains the list of type's genetic parametersh @m is in
thegenericParam element. For generic parameter, we have to keetiibute, type and
name.

<field type=
<genericParams />
<fieldAttribute name=""/>

</field>

29

Type can consist of the definition of the followiitgms: fields, properties and methods. For
the field or variable, there is tlield element. There is important element for field
attributes, generic parameters element and attrilnfirming whether this field is an array or
not.

<property name="" type="" >
<propertyAttribute name=""/>
<propertyArgument>
<parameter />
</propertyArgument>

<propertyMember type="" name="" >
<parameter />
<codeBlock />
</propertyMember>
</property>
Property is a special construction, basically & imember variable but there are methods
defined for setting and getting its value and otions. It has theame andtype attributes
in the root element. As it is a combination of #agiable and methods, this element has child
elements for its attributes, arguments for theoastiand the actions itself.

<method name="" returnType="" >

<methodAttribute name=""/>

<genericParams />

<paramList>
<parameter />

</paramList>

<methodBody>
<localDeclaration />
<codeBlock />

</methodBody>

</method>

Methods are very important part of the assemblyveadhave thenethod elements for this
construction. In the root element, there arentirae attribute for the method name and
returnType to specify the return value type. Optional chileheents for method are
methodAttribute elements. Type can have generic parameters. Sihveanethod.
Moreover, method can have input arguments andaheegtored in thparamList element
with theparameter as the child elements. Next, there is method latty declaration of
local variables and block of the method code.

<delegate name="" returnType="">
<delegateAttribute name=""/>
<paramList />

</delegate>

The special construction is delegate. It is likeifyer to function”. For this, it is important to
know the name, return type, attributes and inpgaiigrents.

30

<event name="" type="" >
<eventAttribute type=""/>

</event>

Except the methods, any type can contain the deaarof the event and there is thent
element for its structure. It contains #went attributes and attributes of its name and type.

<parameter type="" name="">
<paramAttribute type="" />
</parameter>

Theparameter element for parameters is very simple. It congithe name and type of
the parameter and of the listframeter attributes.

<localDeclaration>
<field />
</localDeclaration>

For the local declaration, therelegalDeclaration element which contains the list of the
fields.

<codeBlock>
</codeBlock>
Very large part of the syntax tree in XML is thed! of the code. We prepared very general
elementcodeBlock which holds a group of statements.
<unaryStatement>
<operand />
<operation />
</unaryStatement>
<binaryStatement>
<operandLeft />
<operandRight />
<operation />
</binaryStatement>
Description of statements in the code block staitis the unary or binary statement elements.

The unary statement is composed of an operandrangexation, the binary statement has a
second operand moreover.

<assignStatement>
<leftSide />
<rightSide />
</assignStatement>
The syntax of assignment statement reflectashignStatement element which has two
child elements — for left and right hand side.
<arrayElement name="">
<index />

</arrayElement>

31

Simple variable identifiers can be presented ise¢hglements. Array can be present in these
statements. We have thegayElement element with th@ame attribute for the array
identifier and théndex child element for the position in the array. Ttés be either the
number or the returned function value.

Now, we will introduce other possible constructienise. simple items as function invocation
or items from high-level programming languagesi{@tements, loops etc.).
<ifStatement>

<condition />

<ifTrueBlock />

<ifFalseBlock />

</ifStatement>

The if statement is composed of a condition anddaate blocks — thi&TrueBlock when
the condition is true and tlifEalseBlock otherwise. These two child elements are of the
codeBlock type with different names only.

<switchStatement>
<testltem />
<case>
<value />
<codeBlock />
</case>

</switchStatement>

The switch statement is a little bit similar to thetatement. ThewitchStatement

element contains thestitem element which specifies the test item for the doomd and
thecase child elements which have thealue element for the condition and codeBlock in
the case the condition is true.

Many high-level languages or assembly languagegastifpops, at least the while loop and
the for loop. Moreover, C# supports modified fospanamed foreach.
<whileStatement>

<condition />

<codeBlock />

</whileStatement>

The while loop and its elemewhileStatement ~ containcondition . If it is fulfilled, the
codeBlock is executed.

<forStatement>
<localDeclaration />
<condition />
<incrementation />
<codeBlock />

</forStatement>

Structure of théorStatement element is similar to the for statement syntamany
programming languages. It can contain the localadaton, condition for the execution of

32

thecodeBlock and the incrementation section. All the three elet® are optional,
codeBlock is mandatory.

<foreachStatement>
<localDeclaration />
<array />
<codeBlock />

</foreachStatement>

The foreach statement is designed for simple sexguenilection iteration. The iterated
collection is stored in tharay element; the variable for the collection item éscribed in
thelocalDeclaration element. The same code is executed for each ttohatem. This
code is described in tledeBlock element.

<condition type="">
<leftSide />
<rightSide />
</condition>
In the loops or in the if statement, there is gpecgal construction — a condition. We have the

condition element for this situation. It has ttype attribute and two child elements for the
left and the right hand side of the statement.

<goToStatement target="">
The goto statement to jump to the different lineéha&f code is permitted in many higher level

programming languages. The element for this comneaadry simple with onerget
attribute.

<castStatement type="" >
<statement />

</castStatement>

The elementastStatement reflects type casting witlype attribute which determines the
target type. The child element statement deterntimesalue which is supposed to be casted
to the target type.

<tryStatement>

<codeBlock />

<catchBlock clauseReference="" >
<codeBlock />

</catchBlock>

<faultBlock clauseReference="" >
<codeBlock />

</faultBlock>

<filterBlock>
<codeBlock />

</[filterBlock>

<finallyBlock>
<codeBlock />

33

</finallyBlock>

</tryStatement>

The syntax of the block for catching thrown excepsi is the base of theyStatement

element which is composed of blocks of code. filstk withcodeBlock element is
designed for the possibly dangerous code wherexbeption can be thrown. There has to
follow at least oneatchBlock element to handle thrown exception or fiha&lyBlock

element after this element. TbatchBlock element has ongauseReference attribute
which provides the type of the exception to be festhdn some programming languages,
there are two special constructions that are eréaaiter catch blocks — filter and fault block.
All languages for .NET support finally block so tbeés an element for this construction.

<paramList />

</methodCall>

Very important thing is method call. ThesthodCall element can occur separately or as a
part of other elements. This element hastinee attribute and a child element for method
parameters.

CONCLUSION: RESULTSAND FUTURE WORK
We have presented our decompilation algorithm hedist of the XML elements reflecting
the assembly structure. This is the crucial padwfdesign of the developed tool.

We have implemented the presented algorithm usingA8T representation in XML and we
are going to implement XSL transformations now. Qoal is to create template of XSL
styles for the transformations of the XML represg¢ion of the AST to the source code of the
selected programming language.

Our first step will be to create these styles fer MSIL and C# languages. Next, we suppose
to implement the decompilation transform for thelél Basic and C++/CLI.

ACKNOWLEDGEMENT
The work on this article was supported by the SGBI/A grant of the Ministry of the
Education, Youths and Sports of the Czech Republic.

REFERENCES
1. NET Framework Developer's Guide — Inside the .NEAnfework
URL: <http://msdn.microsoft.com/en-us/library/a2k83VS.71).aspx>
[cit. 2011-03-11]
Fiala P:Analyza sestaveni .NEPrahaCVUT 2010.
Gough JCompiling for the .NET Common Language RuntiRrentice Hall 2001.
ISBN 0-13-062296-6
4. Fiala P., Virius, MStrom abstraktni syntaxe a dekompilace M8iLTvorba
softwaru 2010. Ostrava: VSB — TU Ostrava 2010.7p. 4
.NET ReflectarURL: < http://reflector.red-gate.com/> [cit. 2004-06]
Dis#. URL: <http://netdecompiler.com/> [cit. 2011-03}21
Salamander .NET decompiler
URL: <http://www.remotesoft.com/salamander/indemb{cit. 2011-03-21]

w N

No o

34

