
27

DECOMPILATION IN .NET FRAMEWORK

Pavel Fiala, Miroslav Virius
FJFI ČVUT v Praze, fialapa5@fjfi.cvut.cz

ABSTRACT:
This article explains the process of decompilation in .NET Framework and introduces the
design of abstract syntax tree representation in XML.

KEYWORDS:
MSIL, abstract syntax tree, assembly decompilation, XML representation

INTRODUCTION: EXISTING SOLUTIONS AND MOTIVATION
There are decompilation programs for the .NET Framework. One the famous decompilation
tool for the .NET is the Lutz Roeder’s .NET Reflektor [5], now distributed by the RedGate
Company; this tool is paid since 2011. The Dis# distributed by the NETdecompiler.com
Company [6] is paid, too. The Salamander .NET Decompiler distributed by Remotesoft [7] is
paid as well. Algorithms used by these tools were not published.
Our aim is to develop a flexible tool for the decompilation based on XSL transformation of
the abstract syntax tree (AST) and to make the algorithms available to public. The program
shall be able to read the user-defined transformation description for any programming
language and to produce the source code according to this transformation.
In the first part of this article, we briefly explain the algorithm for the creation of the AST
representing the decompiled assembly [1-4]. The next part presents our design of the XML
representation of the AST.

ASSEBMLY TRANSFORMATION TO THE ABSTRACT SYNTAX TREE
The basic idea of the decompilation of the .NET assembly is to create the abstract syntax tree
according to the information stored in the assembly and to transform this tree. Tools from
Microsoft .NET Framework can be used to simplify the decompilation process. The classes
from System.Reflection and System.Reflection.Emit namespaces are very useful
for extracting the assembly content. There are two main ways of the decompilation. The
whole assembly can be processed and stored in the AST or only the sketch of the assembly
(assembly attributes, modules, types, type's fields and methods) is stored and the rest of the
assembly is processed according to the incoming requests and added to the stored tree. We
will use the second way.

At the beginning of the decompilation, the assembly is loaded by the method provided in the
System.Reflection.Assembly class and the root element of the whole XML document is
created. Now, we can obtain both information about assembly declaration, the module list
which the assembly consists of, referenced external assemblies and used resources. First, all
of assembly attributes are added to the XML document, and then resources and references are
added to the XML document. Last, the module list is obtained via GetModules() method.

Each module is processed in the following way. First, the list of global methods is obtained
from the module. Next, the list is parsed into the dedicated XML elements. The whole content
of the module has to be member of some namespace. If the method's namespace doesn't exist
in the AST, it's created and added to the module's XML representation. Then, method element
is added to the namespace element. After the global methods, the list of types is got from the
module. The type element is created now.

28

Now, the base type and the list of implemented interfaces are obtained. The base type can be
only one so it's added as the child element. We have to reduce the interface list before adding
the interfaces to the XML because we want to show only interfaces implemented in this type
and not the ones implemented in the base type. This reduced list is inserted to the type XML
element then. Moreover, the type can have generic parameters thus they are stored in the
dedicated element. Then the most important parts of the type are still waiting to be processed
– fields, properties, methods and events. They are got via GetMembers() method and they
are parsed to the XML elements according to their type.

For the field, the full element is created. For the property, the element with the full
information about the name, the attributes and the parameters is created. Then only the sketch
of the property member is created. That means that only the name and the type are stored.
Similar situation is for the method – only the sketch is created. The method element has
almost its full content except the method body. That element is constructed after any
incoming request. Event for the type has the full XML element. Now, the first stage is
finished and the basic AST is done.

Next step is the evaluating of the method nodes according to the incoming request. If the
request is for the non-evaluated method, it is processed. The method node contains everything
important except the method body. Since MSIL is similar to the assembler, function invoking
with the input parameters and returning value is done by stack (and many other operation use
stack too). Hence the stack operations have to be simulated as they are done in the .NET
virtual machine. Method body has a special class System.Reflection.MethodBody .
Using this class, it is possible to get three important things: maximum stack size, local
declarations (only the list with variable types without names) and an array of bytes
representing the code. Now, we are ready to pass through the byte array. We are at the
position 0 at the beginning. The first byte is read and if the value is 0xFE, the second byte is
read immediately. According to the byte value, the operation and its operand are recognized.
If the operand is given in the byte array, it is read and the position is increased by the
specified value for this operation and the stack operation is simulated. We have prepared the
state machine to determine constructions according to the operation sequences. When the
stack work is done, the state is refreshed according to the operation type, and when the final
state is reached, appropriate XML element is created and added to the method body element.
The whole method body is processed this way.

ABSTRACT SYNTAX TREE REPRESENTATION IN XML
We designed the abstract syntax tree representation in the XML according to the analysis of
the permitted constructions in MSIL.

The first and basic element is an assembly element.

<assembly name="">

 <assemblyDeclaration name="" value="" />

 <module />

 <resource name=”” />

 <reference name=”” />

</assembly>

This element has only the name attribute, which contains the name of the analysed assembly.
The assemblyDeclaration child elements represent the information about the assembly
declarations (i.e. assembly version, copyright etc.). Next, module elements contain the

29

information about the modules of the analysed assembly. Last two elements, resource and
reference , are optional and they hold the resources used and referenced external
assemblies.

<module name="">

 <namespace name="">

 <method />

 <type />

 </namespace>

</module>

Structure of the module element is simple – each module has name (attribute name) and the
whole module content has to be member of some namespace. For the namespace, there is
element namespace with only one important attribute – its name. In this element, there are
method child elements for any method declared outside of any type and type elements for
types declared in the module. Both type and method element can occur more times.

<type name="">

 <extends name="" />

 <implements name="" />

 <genericParams />

 <field />

 <property />

 <method />

 <event />

</type>

For the type, it's important to know its name (name attribute in the root type element). First
two child elements, extends and implements , contain the information about the base type
of this type and about interfaces which are implemented in this type; implements attribute
can occur more times. Next, it's important to have generic parameters (if there is any) in
genericParams element, field, properties and methods of the type (in the field ,
property , method elements).

<genericParams>

 <genericParam type=”” name=””>

 <genericParamAttribute name="" />

 </genericParam>

</genericParams>

The element genericParams contains the list of type's genetic parameters; each item is in
the genericParam element. For generic parameter, we have to keep its attribute, type and
name.

<field type="" name="" array=”” >

 <genericParams />

 <fieldAttribute name="" />

</field>

30

Type can consist of the definition of the following items: fields, properties and methods. For
the field or variable, there is the field element. There is important element for field
attributes, generic parameters element and attribute informing whether this field is an array or
not.

<property name="" type="" >

 <propertyAttribute name="" />

 <propertyArgument>

 <parameter />

 </propertyArgument>

 <propertyMember type="" name="" >

 <parameter />

 <codeBlock />

 </propertyMember>

</property>

Property is a special construction, basically it is a member variable but there are methods
defined for setting and getting its value and other actions. It has the name and type attributes
in the root element. As it is a combination of the variable and methods, this element has child
elements for its attributes, arguments for the actions and the actions itself.

<method name="" returnType=”” >

 <methodAttribute name="" />

 <genericParams />

 <paramList>

 <parameter />

 </paramList>

 <methodBody>

 <localDeclaration />

 <codeBlock />

 </methodBody>

</method>

Methods are very important part of the assembly and we have the method elements for this
construction. In the root element, there are the name attribute for the method name and
returnType to specify the return value type. Optional child elements for method are
methodAttribute elements. Type can have generic parameters. So can the method.
Moreover, method can have input arguments and they are stored in the paramList element
with the parameter as the child elements. Next, there is method body with declaration of
local variables and block of the method code.

<delegate name="" returnType=”” >

 <delegateAttribute name="" />

 <paramList />

</delegate>

The special construction is delegate. It is like “pointer to function”. For this, it is important to
know the name, return type, attributes and input arguments.

31

<event name="" type=”” >

 <eventAttribute type="" />

</event>

Except the methods, any type can contain the declaration of the event and there is the event
element for its structure. It contains the event attributes and attributes of its name and type.

<parameter type="" name="">

 <paramAttribute type="" />

</parameter>

The parameter element for parameters is very simple. It consists of the name and type of
the parameter and of the list of parameter attributes.

<localDeclaration>

 <field />

</localDeclaration>

For the local declaration, there is localDeclaration element which contains the list of the
fields.

<codeBlock>

</codeBlock>

Very large part of the syntax tree in XML is the block of the code. We prepared very general
element codeBlock which holds a group of statements.

<unaryStatement>

 <operand />

 <operation />

</unaryStatement>

<binaryStatement>

 <operandLeft />

 <operandRight />

 <operation />

</binaryStatement>

Description of statements in the code block starts with the unary or binary statement elements.
The unary statement is composed of an operand and an operation, the binary statement has a
second operand moreover.

<assignStatement>

 <leftSide />

 <rightSide />

</assignStatement>

The syntax of assignment statement reflects the assignStatement element which has two
child elements – for left and right hand side.

<arrayElement name="">

 <index />

</arrayElement>

32

Simple variable identifiers can be presented in these elements. Array can be present in these
statements. We have the arrayElement element with the name attribute for the array
identifier and the index child element for the position in the array. This can be either the
number or the returned function value.

Now, we will introduce other possible constructions – i.e. simple items as function invocation
or items from high-level programming languages (if statements, loops etc.).

<ifStatement>

 <condition />

 <ifTrueBlock />

 <ifFalseBlock />

</ifStatement>

The if statement is composed of a condition and two code blocks – the ifTrueBlock when
the condition is true and the ifFalseBlock otherwise. These two child elements are of the
codeBlock type with different names only.

<switchStatement>

 <testItem />

 <case>

 <value />

 <codeBlock />

 </case>

</switchStatement>

The switch statement is a little bit similar to the if statement. The switchStatement
element contains the testItem element which specifies the test item for the condition and
the case child elements which have the value element for the condition and codeBlock in
the case the condition is true.

Many high-level languages or assembly languages support loops, at least the while loop and
the for loop. Moreover, C# supports modified for loop named foreach.

<whileStatement>

 <condition />

 <codeBlock />

</whileStatement>

The while loop and its element whileStatement contain condition . If it is fulfilled, the
codeBlock is executed.

<forStatement>

 <localDeclaration />

 <condition />

 <incrementation />

 <codeBlock />

</forStatement>

Structure of the forStatement element is similar to the for statement syntax in many
programming languages. It can contain the local declaration, condition for the execution of

33

the codeBlock and the incrementation section. All the three elements are optional,
codeBlock is mandatory.

<foreachStatement>

 <localDeclaration />

 <array />

 <codeBlock />

</foreachStatement>

The foreach statement is designed for simple sequence collection iteration. The iterated
collection is stored in the array element; the variable for the collection item is described in
the localDeclaration element. The same code is executed for each collection item. This
code is described in the codeBlock element.

<condition type="">

 <leftSide />

 <rightSide />

</condition>

In the loops or in the if statement, there is one special construction – a condition. We have the
condition element for this situation. It has the type attribute and two child elements for the
left and the right hand side of the statement.

<goToStatement target="">

The goto statement to jump to the different line of the code is permitted in many higher level
programming languages. The element for this command is very simple with one target
attribute.

<castStatement type="" >

 <statement />

</castStatement>

The element castStatement reflects type casting with type attribute which determines the
target type. The child element statement determines the value which is supposed to be casted
to the target type.

<tryStatement>

 <codeBlock />

 <catchBlock clauseReference="" >

 <codeBlock />

 </catchBlock>

 <faultBlock clauseReference="" >

 <codeBlock />

 </faultBlock>

 <filterBlock>

 <codeBlock />

 </filterBlock>

 <finallyBlock>

 <codeBlock />

34

 </finallyBlock>

</tryStatement>

The syntax of the block for catching thrown exceptions is the base of the tryStatement
element which is composed of blocks of code. First block with codeBlock element is
designed for the possibly dangerous code where the exception can be thrown. There has to
follow at least one catchBlock element to handle thrown exception or the finallyBlock
element after this element. The catchBlock element has one clauseReference attribute
which provides the type of the exception to be handled. In some programming languages,
there are two special constructions that are executed after catch blocks – filter and fault block.
All languages for .NET support finally block so there is an element for this construction.

<methodCall name="">

 <paramList />

</methodCall>

Very important thing is method call. The methodCall element can occur separately or as a
part of other elements. This element has the name attribute and a child element for method
parameters.

CONCLUSION: RESULTS AND FUTURE WORK
We have presented our decompilation algorithm and the list of the XML elements reflecting
the assembly structure. This is the crucial part of our design of the developed tool.

We have implemented the presented algorithm using our AST representation in XML and we
are going to implement XSL transformations now. Our goal is to create template of XSL
styles for the transformations of the XML representation of the AST to the source code of the
selected programming language.

Our first step will be to create these styles for the MSIL and C# languages. Next, we suppose
to implement the decompilation transform for the Visual Basic and C++/CLI.

ACKNOWLEDGEMENT
The work on this article was supported by the SGS11/167 grant of the Ministry of the
Education, Youths and Sports of the Czech Republic.

REFERENCES

1. NET Framework Developer's Guide – Inside the .NET Framework.
URL: <http://msdn.microsoft.com/en-us/library/a4t23ktk(VS.71).aspx>
[cit. 2011-03-11]

2. Fiala P: Analýza sestavení .NET. Praha: ČVUT 2010.
3. Gough J. Compiling for the .NET Common Language Runtime. Prentice Hall 2001.

ISBN 0-13-062296-6
4. Fiala P., Virius, M. Strom abstraktní syntaxe a dekompilace MSIL. In: Tvorba

softwaru 2010. Ostrava: VŠB – TU Ostrava 2010. p. 47.
5. .NET Reflector. URL: < http://reflector.red-gate.com/> [cit. 2011-04-06]
6. Dis#. URL: <http://netdecompiler.com/> [cit. 2011-03-21]
7. Salamander .NET decompiler.

URL: <http://www.remotesoft.com/salamander/index.html>[cit. 2011-03-21]

