ASYNCHRONOUS PROGRAMMING IN C# 5 WITHOUT USE
OF MULTIPLE THREADS

AleS Keprt
Department of Informatics, Moravian College Olomouc
ales.keprt@mvso.cz

ABSTRACT:

Asynchrony is a situation when multiple things acationce, in parallel. In programming we
encounter it quite often, typically for example wh&orking with computer network or user
interface, where program needs to wait for extéyrsarted events and want do its own work
at once. These situations are usually treated mygusultiple threads. Drawback of this
approach is that programming with threads and dgihgghose programs is often quite hard
and complicated, and threads can also lower coripngh power of a computer when there
are too many of them used at once. Fifth versioin®fC# language brings a new approach to
these situations, which is a revolutionary one ommon praxis: Now we can create
asynchronous programs even without use of multthleads. We can create the same
applications as before with all their goods, buthwiist a single thread. The paper introduces
this new technology and shows which situations most suitable for.

KEYWORDS:
Asynchrony, C#, .NET, thread, continuation, awagtartment threading, exception

1 STATUS QUO: THREADS

In recent years it has been quite common to usépteuthreads in programs. They provide at
least two great benefits:

1. We can do more things at once. This is widely usedll kinds of servers, where they
accept requests from their clients and each reqaesbe executed by another thread.
This way the server can utilize more than one mlaysCPU to speed up the whole
system a lot. The idea of multiple CPUs in a sirgenputer is now common on all
kind of computers, so it is not limited to servdvlany kinds of programs now try to
use more than one thread to speed up computaticluding the most popular kinds
of software like web browsers, audio and video etay office applications or
computer games.

2. We can wait for something to happen and do othagshuntil. This is usually related
to external events, in praxis it happens most ofteen working with user interface
and/or computer network. (Human users and otherpotens in network are those
externals.) These situations are usually treatedsiriyg a dedicated thread to wait for
all incoming events, and then it hand over the &vémother threads to do the actual
job.

From a computer user’'s perspective, the use ofadlsranakes programs better. From a
programmer’s perspective, the use of threads brwogsplications to source code. Common

a7



programming languages are primarily suited for leinigreaded programming, and we need to
use a lot of inter-thread synchronizations dueharesd memory. Some software, like latest

web browsers, split their threads into multipleqasses, so they actually don’t need so much
synchronization, but in turn it needs some levahtdr-process synchronization which is also

quite complex and nontrivial.

Other drawback of using many threads is that tresdra lot of memory. Technically, each
thread eats a few megabytes of RAM, as it need®vitls program stack and task state
segment with system variables. This isn’t a bigopgm on smaller scale but limits the scaling
of server applications a lot. For example makimgutiuser server to host 5000 users at once
is not possible with threads, because a computehaedly create and support 5000 threads
and (metaphorically) stay alive. Some operatingesys like Windows NT family offer other
solutions to these kinds of servers, which allowdto multiple disk and network access
without threads, but these libraries are even nooraplicated to use than threads, so vast
majority of real world applications stick with coramthread based implementation.

One quite new field of problems where threads aedwame into play when modern rich
web applications started to spread. The key beffiefih user's perspective is that these
applications can do partial page updates, instéddllopage reloads, which speeds up web
applications and makes better users’ experiencesd lapplications can be implemented
either with HTML and JavaScript, or with some otmem-HTML framework like Adobe
Flash or Microsoft Silverlight. These modern nonMNT web frameworks offer the
possibility of creating better looking graphicakusnterface than classical HTML with CSS
styles. While Adobe Flash is today de facto stathdar web pages based on animations and
video players, Microsoft’s Silverlight starts torepd in the field of information systems and
other enterprise applications where it can offeccimbetter user experience than solutions
based on ASP.NET, and still run in a standard welwser. All these web applications share
one clear common quality: They often download aodd#l data from server on background.
Network can lag or go down sometimes, so theseaagioins need to use threads in order to
communicate over network and “stay alive” at theelef user interface.

2 IDEA OF SINGLE THREADED ASYNCHRONY

The previous section described why threads are wsedften in nowadays software
applications. Now let’s introduce a new idea tdfitwe look precisely on the multithreaded
scenarios presented above, we can see that aicagmiportion of them is related to “waiting
to something”, not actually “computing somethingV¥hether it's a user interface or a
network communication, it actually doesn’t compukéngs in parallel, it just waits for
something to happen and do nothing until it happ#/es say something is “parallel” when it
actually does some computation in multiple threah&l “asynchronous” when it just waits
for some activity to happen outside (and it happearallel, but not here). Normally these two
terms are melted together because it's how compuaeks — both parallel and asynchronous
scenarios are often treated by threads. Now lptisis and talk about asynchrony.

In general, asynchronous programming model carsbd in any kind of situations. Speaking
in programming terms, synchronous model is basettahand wait for result, then use the
result”, while asynchronous is based on “call aathnn immediately, call back later with
result”. When asynchrony is well implemented aneld)sve don’t waste time by waiting.

If we would be able to wait for something withoutltiple threads, we could make these
kinds of applications much simpler, because we ccauhit all inter-thread synchronization
(or at least most of it, if we kept some other #dlai® of other reasons). Obviously, this cannot
be made so easily. Namely, it needs a new progragpearadigm, i.e. a new programming

48



language or a substantial change in an existingranmaming language. Fortunately, Microsoft
iIs planning to make this substantial change in foréhcoming fifth version of their C#
language. It means that we will be able to exglenefits of the single threaded asynchrony
in main stream programming language and mainstredtform, which is quite more
interesting for many programmers than to have iplemented in a separate third party
library.

This paper talks about CTP (community tech previgersion called “Microsoft Visual
Studio Async” [Async, Madl10] which can be installeml Visual Studio 2010. It is a
preliminary version of a library which is meant be included in the next version of Visual
Studio and C# language compiler.

3 EXAMPLE OF AWAIT-ASYNC PATTERN

Let’s show the idea on a simple example. Let’s imagve want to somehow archive a list of
documents which must be downloaded from web. Wedcaihin C# this way:

void ArchiveDocuments(List<UrI> urls) {
foreach(Url url in urls) Archive(Fetch(url));

}

And now let’s do the same in parallel in C# 5:

asyncvoid ArchiveDocuments(List<Url> urls) {
Task archive = null;
foreach(Url url in urls) {
var document await FetchAsync(url);
if(archive != null)await archive;
archive = ArchiveAsync(document);

}
}

This can seem to be confusing at the first sighit,its not pseudocode — it's the real piece of
code. There are new language keywoadgyncandawait.

Keyword async is a marker for asynchronous methods. It says:.y;Hbis method is
asynchronous i.e. it returns immediately and thalh lwack with result.” Technically, these
methods return Task or Task<T> instead of void ,douf they are declared as usual only with
added async at the front.

Keyword await makes the program wait for async result to be adetp and ready. The
method returns immediately when this command isoentered and wanted result is not
ready. Later when the awaited result is readyirterupted method is resumed.

In our example we call await twice: First time waitvfor next document to be fetched,
second time we wait for the previous document tadohived. This way we fetch documents
one after another, and archive one after anotretching and archiving goes in parallel, but
one document after another. The magic beyond teeescadds one important feature to it:
The program is single threaded, no synchronizasorequired by the programmer, and our
ArchiveDocuments() method returns immediately. gdtlat really returns back to the caller
on the first await command. The flow gets back tehveDocuments() later when the first
document is fetched, its archiving is started, dr@dsecond document is started to be fetched.
Then the flow switches back to main program. lttskaes back to ArchiveDocuments() later

49



when the second document is fetched. If the fimtudhent is not yet archived, the flow
switches back to main program... etc.

The whole archiving operation is asynchronous, bsedt is marked async. We can either use
it synchronously:

await ArchiveDocuments(urls);
or we can let it run truly asynchronously:

var archiving = ArchiveDocuments(urls);
...do anything...
await archiving; //here we wait for archiving toneplete

So the use of await-async is very easy. The cotdetbeadded by C# compiler is still large,

but we don’t need to bother, it is hidden from Also, the main huge benefit of this approach
Is that the compiler makes it work without addigdthreads. It “somehow” makes all things
happen in a switched context of a single thread! et again for us: We don’t need to care
about “how’s”.

4 CURRENT CONTINUATION

As said above, in praxis we don’t need to care abbbaw’'s* when using await-async
constructs. But we do care here. The whole conisepbt based on threads, it's based on
Continuation Passing Style (CPS) known from fun@oprogramming. (Also note that F#
programming language (a new functional language/isual Studio 2010) already does
support a kind of single threaded asynchrony icutsent version.)

Before continuing let’s briefly recall the concegft CPS. CPS is an alternative to classical
imperative programming languages’ style of conitngliflow. While imperative languages do

one command after another, and allow to call a@ubre which can result some kind of a
value, here we explicitly pass “what to do nextiqm) as an argument to a called function.
Called function never returns, it uses this wtdguament to know what to do after its own

computation is finished. This programming style emkprograms longer and less easily
readable, but allows programmers to design their floww control commands. For example if

we imagine there is no commands like if, ?: operawitch-case, while or do-while, we can

program all these constructs from scratch if owwgprmming language supports CPS. The
important note here is that programming directlfhw@PS is not easy, but programming with
those if, for or while is very easy and all the @exity is hidden behind in language’s

compiler. Similarly, await-async is easily usaldall very complicated behind and all that

complicated stuff is hidden from us. (Another nes@mple where continuation is involved, is

yield command in C# iterators.)

In the multithreaded world we would assumeait command to mean: “Block the current
thread until the asynchronous operation returnsiid aasync command to mean:
“Automatically schedule this method to run on a kesrthread”. [Lip10-A2] Interestingly,
the opposite is truth.

Await never blocks the current thread. If the awaithing is already computed, the flow
advances normally. If the awaited thing isn’t coteplyet, the current continuation is packed
into object and it is immediately returned to ttedling method. In fact, await says: “This
method returns immediately, either returning thempoted result, or returning the
continuation if the result is not ready yet.” Ordefined by Lippert [Lip10-A2]: “If the task
we are awaiting has not yet completed then sigthepest of this method as the continuation

50



of that task, and then return to your caller immagaly; the task will invoke the continuation
when it completes.”

Async declares the method as returning some kinichek<T>, a standard .NET task (which,
technically, can be run anytime later). Or as defitby Lippert [Lip10-A2]: “This method
contains control flow that involves awaiting asyraious operations and will therefore be
rewritten by the compiler into continuation passstgle to ensure that the asynchronous
operations can resume this method at the right”spbe important point here is that async
keyword doesn’'t say a word about how the real tesfuthe method is computed. It can be
run on a background worker thread, it can be dmieguoperating system'’s threadless 10
routines, etc. We don’t care about how the asynihotgecomputes the result; we just declare
what to do when the method’s result becomes re@ldp. note that by using Task<> objects
here we don’'t become multithreaded. Task classstaadard way of declaring a job to be
done in .NET. It is used by Task Parallel Librapy multithreaded computation, but here we
can use it without threads. (We actually don’t catepanything by using it. We really just
declare a job to be computed. Somewhere, sometysomeone...)

5 AWAITING MANY TASKS

We can also await more tasks than one at onces et back to our prior example method
ArchiveDocuments(), and now imagine we have adfstirl lists which we want to archive
and wait for it.

List<List<Url>> groupsOfUrls;

Task<long[]> allResults

= Task.WhenAll(from urls in groupsOfUrls selectcAiveDocumentsAsync(urls));
long[] results = await allResults;

Task.WhenAll() method takes a list of tasks, asynchronously avesith of them and return
a task which represents this composition. Literatlgays: “This task gets finished when all
those tasks are finished.” Similarly, there is ottmethod called’ask.WhenAny() which
awaits any single task from the list to complete.

6 SINGLE THREADED ASYNCHRONY UNCOVERED

In the previous sections we omitted details on hlev C# compiler implements await and
async keywords, because proper description woldlel ttko much space and can't fit into this
short paper. Also, it is more important to clearhderstand the end user’s point of view. (By
end user we mean a programmer who wants to usenxaie-async approach.)

So is it really possible to have all the work dame single thread? Yes, it is. The situation is
similar to the one well know from multithreaded gramming on a single CPU computers.
How can many threads run on a single CPU? Theyswaitched. Indeed, once in a while
operating system stores the continuation of theeatithread and switches to the continuation
of another one. Using the principle of continuatioperating system is able to schedule many
threads on a single physical CPU. C# uses a simparoach to implement single threaded
asynchrony.

There are a few different scheduling schemes inl.lRE asynchronous tasks, based on the
kind of application. Applications (or better salttdads) with windows have got a message
gueue, so it is used as a primary means for scimgdakynchronous tasks. The message
queue makes the application’s user interface threadin an apartment mode (i.e. single
threaded apartment), which is great for our purpo8gait command is implemented so that
it packs the current continuation to a task obgtd attaches this task via message queue to

51



the event of finishing the awaited task. Betted s@henever the awaited task is finished, an
event signals it, and the task with packed contionas put to message queue so it can be
resumed when the message loop gets the message.Olleduling mechanisms are used in
scenarios where message queue is not available gtleeother, but technically similar), this
applies e.g. to ASP.NET and other server-basedasiosiLip10-A4].

7 EXCEPTIONS

Our final stand will be at exceptions. Normally wan use try-catch-finally blocks to deal

with exceptional situations. In the case of sintjieeaded asynchrony, the situation is a bit
more complex because we often lost original progcamtext and are unable to easily find

the correct or intended catch and finally blockt’d.show it on a simple example:

async void MyMethod() {
try { await DoSomethingAsync(); }
catch{ ...}
finally { ... }

}

If DoSomethingAsync() throws an exception befosefitst return, there will be no problem
and our catch and finally blocks will normally ruf.DoSomethingAsync() finishes its first
run normally, it returns an asynchronous task. Thater, when this task is scheduled, an
exception may arise. In that case we cannot ruroagimal catch and finally block, because
MyMethod is long gone from call stack, and its ¢atch-finally doesn’t exist anymore. In
that case the exception is caught and stored irtatble object, and the task is marked as
unsuccessful. When awaiting task (i.e. the intaadpMyMethod) is resumed using its
continuation, it takes the exception from the (D®thingAsync) task object and serves the
exception using intended catch and finally blodkur method (MyMethod) is unable to
catch the exception (probably because the excéptigpe doesn’t match) it does the same
thing: Packs the exception into its task objecenfffRmber: Every method which uses await
must be declared as async and return an asynche¢askiobject.)

8 CONCLUSION

In this paper we took a look at Microsoft’'s new mdyronous programming library which is

to be shipped with the next version of C# languageé .NET Framework version 5.0. We

briefly showed where and why it is beneficial, dnoked at its basic programming constructs
from the user’s perspective.

Note: All code examples presented in this papetbased on or taken directly from Eric Lippert’s ¢plgt's on
MSDN website, see the list of references).

REFERENCES

[Async] Microsoft Visual Studio Asynchronous Progmaing.
http://msdn.microsoft.com/en-us/vstudio/gg316360

[Hej10] Anders Hejlsbergl'he Future of C# and Visual BaskDC 2010, Microsoft
Corporation. http://channel9.msdn.com/Events/PD@POFT09

[Lip10-C1] Eric Lippert.Continuation Passing Style RevisitdtiSDN Blogs, Microsoft
Corporation, 2010. http://blogs.msdn.com/b/ericiifarchive/2010/10/21/continuation-
passing-style-revisited-part-one.aspx

52



[Lip10-A1l] Eric Lippert.Asynchrony in C# 5, Part OnMSDN Blogs, Microsoft
Corporation, 2010.
http://blogs.msdn.com/b/ericlippert/archive/201@2B3asynchrony-in-c-5-part-one.aspx

[Lip10-AZ2] Eric Lippert.Asynchronous Programming in C# 5.0 part two: Wheawait?
MSDN Blogs, Microsoft Corporation, 2010.
http://blogs.msdn.com/b/ericlippert/archive/201@2B3asynchronous-programming-in-c-5-0-
part-two-whence-await.aspx

[Lip10-A4] Eric Lippert.Asynchronous Programming in C# 5.0 part four: hig magic.
MSDN Blogs, Microsoft Corporation, 2010.
http://blogs.msdn.com/b/ericlippert/archive/201004asynchrony-in-c-5-0-part-four-it-s-
not-magic.aspx

[Torl0] Mads TorgerseAsynchronous Programming in C# and Visual Baslicrosoft
Corporation, 2010.
http://www.microsoft.com/downloads/en/details.adpailylD=d7ccfefa-123a-40e5-8ed5-
8d2edd68acf4

53



