APPLICATION OF DECLARATIVE PARADIGM IN
ENTERPRISE IS

David Klika®*, Josef Smolka™*”
YFaculty of Nucle*ar Sciences and Physical Enginge®ifiU in Prague’SEFIRA spol. s r.0.
“klika@sefira.cz, smolkjos @fjfi.cvut.cz

ABSTRACT:

This paper introduces one of possible applicatmindeclarative paradigm in development of
an enterprise information system. Advantages ofaghgroach are shown on examples based
on a complex system developed for an electricitpgany.

KEYWORDS.
declarative programming, enterprise system, mesadabovy, Java

INTRODUCTION

When designing an enterprise information systemeldg@ers should consider not only the
costs of initial development itself, but also thests of maintenance and expansion of the
system during its lifetime. If whole business logichard-wired into the system source code,
every future change must be made by a programnaeaféected part must be redeployed to a
runtime environment. This redeployment could bea headache because of common policy
in corporate environment, i.e. a supplier of thestesyn cannot usually perform the
redeployment himself, but has to ask an applicatidministrator to perform the task. In case
of a serious error, delay between report of thereand deployment of the fixed version can
be unpleasant. This is what we call a closed sy$tem the perspective of the maintenance
and expansion. On the other hand, in open syster, lusiness logic can be expanded and
fixed at runtime not only by developers, but algadministrators if it is desirable.

In this paper we introduce a method we have emplalyeing development of an enterprise
information system for an electricity company. Thgstem is used for planning and
evaluation of electricity generation, so the cowsibess logic consists mainly of calculation
of many quantities for power plants and individeguipment. The main use case could be
described as follows:

1. Power plants, equipment and commodities charatitsrisntry.

2. Power generation plan entry.

3. Actual power generation entry and evaluation.

4. Reports entry and evaluation.
As can be seen above, user works primarily in ‘@éatay’ mode entering dozens of values for
defined generation units. System then computessadfi derived quantities and aggregations
over a period and presents the results in the farigraphical reports. The system has been
developed on J2EE platform with help of Spring feavork and Groovy dynamic language.

To describe these two mentioned common use casés édtry in form of quantity values
and reports generation), system of hierarchicaladett was created. That enables us to
program new business logic in declarative mann#grout modifications of original Java code
and to deploy changes to testing and productionr@mwent instantly. Utilization of this
method naturally led to agile development and adidwhe customer to take active role in the
development process.

54

Declarative programming

In a declarative language programmer specifies whato be computed in contrast to
imperative language in which programmer has to igp&ow this is to be computed. This
means that programmer can describe the logic @jram without describing its control flow

[1]2].

DESCRIBING COMMON USE CASESWITH HIERARCHICAL METADATA
As stated in the introduction, core of our soluti®ho describe common use cases in system
with hierarchical metadata. In sum there are thbtagses:

e computational rules — define relations between tjtias),

* input wizards and validation rules — define inparnfs,

e reports and exports — define output formats.
Computational rules are combined with input wizaaigl reports metadata to generate
presentation tier.

RULE GROUP
RULE
WIZARD : PREV [MYPAGE 0 NEXT
—LOGICAL GROUP QUANTITY UNT | 2 3 4
L OUTPUT COLUMN * 1| Unit B1
INPUT COLUMN 2| msv MWh 51 50 49 52
DERIVED COLUMN 3| Brep MWh 3 | 2 | 1] 2
4| Evs MWh 4 4 2 3
—LOGICAL GROUP —>> pl\r/loect::s;ag — | 5| tow MWh 44 44 46 47
L PAGE 6| UnitB2
VISUAL GROUP 7| Esv MWh 50 53 53 52
INPUT QUANTITY &| Ltep MWh 4 2 2 2
DERIVED QUANTITY 9| Evs MWh 3 4 2 3

Figure 1: Input wizards and computational rules metadata trees and resultant spreadsheet.

I nput wizards metadata

As can be seen in Figure 1 input wizard is desdribg a tree. Every node in the tree
represents an element of a resultant spreadshieagthdata is entered. All types of elements
have some common properties, e.g.:

* Processing enabled — Logical expression statingthenethe element should be
processed during spreadsheet construction.

* Rendering enabled — Logical expression stating mérahe element should be visible
to the user. When element is not visible, but itpiocessed in a spreadsheet
construction phase, it can still influence the data

* Repeating expression — Expression that evaluatasctalection of objects for which
is the sub tree repeated in result. Typical use:casclear power plant has several
units, for every unit same quantities should bereat (see Figure 2).

* Repeating variable — Name of the variable to whidnrent object from repeated
collection is stored. This variable can then beduseother expressions.

» Definition of other variables that can be usechm tespective sub tree.

. —VISUAL GROUP - Unit B1
collection

—VISUAL GROUP - Unit [B1, B2] —— INPUT QUANTITY - Esv
———INPUT QUANTITY - Esv ——INPUT QUANTITY - Evs
—> —VISUAL GROUP - Unit B2

——INPUT QUANTITY - Evs

— INPUT QUANTITY - Esv
: INPUT QUANTITY - Evs

Figure 2: Repeating sub tree.

55

Substantial elements of the wizard tree are quastéments: an input quantity element for
guantities entered by user and a derived quantiyent for quantities computed according
to defined rules. Every quantity element is defingg its quantity number and other
properties:
» Default value — Expression defining default valme dase no other value of the
quantity is available.
« Value storage — Expression stating whether theevahould be persistent (stored in
database) or not.
» Editable — Expression stating whether the valuebmaedited by a user.
Quantity elements can be grouped in visual andc&gjroups, the first one has graphical
representation in the resultant spreadsheet. Toesgs can be organized into pages and
pages into wizards.

Any sub tree can be shared among wizards or wahawizard. This means, that there can
be only one definition of sub tree, but many usadgasch sub tree is in fact a reusable
component. For example, all wizards use similaucstire of columns (twelve columns for

months, four columns for quarterly aggregations and column for yearly aggregation), so
there is no need to define them for every wizaphssely.

Another important part is data validation. Whenruesgers new data, go to the next page or
save whole wizard, the system must ensure thatezhtend computed data is correct. This is
achieved through a system of validation rules. d&lon rule consists of:

» Severity — Specify whether validation failure isexnor or just a warning.

» Left expression, an operator and right expressitogic of the validation. When

left expression is left blank, value of validatadqtity is used.

* Application condition — Specify when this validaticule is applicable.

» Validation phase — Phase in which the rule shoaldiplied.
This is quite simple but sufficient way of ensurieigtered data validity. Other simple checks
are defined by quantities itself: checks for zewgative or positive value.

Reportsand exports metadata
Reports in PDF format, CSV and database exportgdeseribed by the same set of metadata
that is quite similar to previous class.

Computational rules metadata
Computational rules are key concept in our solutiBales are used to describe relations
between particular quantities, e.g. g = Q / G. Wheer enters values for Q and G, value of g
is computed automatically. Every rule belongs tteast one rule group and is defined by the
following set of properties:
* Quantity numbers — Collection of quantity numbersvhich is the rule applicable. In
many cases dozens of quantities can be computzahilar way.
* Priority — Rules are applied in order accordingptrity, i.e. system tries to apply
rule with highest priority first, if it is not apighble second one is tried and so on.
» Expression — Definition of a computation rule.
* Facility/Device — Define whether the value is cortgoufor whole facility or particular
device.
e Commodity — Define whether the value is computedofarticular commodity (fuel in
most cases).

56

e Cumulation — Define whether the value is computedifdividual months or it is
aggregation for some period.

Example on using computational rules

Let there be a derived quantity input element irand definition for quantity X which should
be computed for whole facility. During spreadsheenstruction phase, system has to
determine value of X in order to be able to presemd a user. Let suppose that wizard
definition has associated rule group containing ok quantity X and all dependencies as
shown on left side in Figure 3.

root - result: 20728.0

Lrule [RX]: X=Y1+ Y2+ Y3:20728.0

——rule [RY1]: Y1 =sum Y1 for all units: 728.0

direct value: 300.0

load record [Y'1, B1, DS, 2010]: 300.0

direct value: 428.0

R%E)?E?[Ifi Y2+ V3 load record [Y'1, B2, DS, 2010]: 428.0
RY1: Y1 =sum Y1 for all units } _m(lﬁr[elz‘??;ﬁlil 3/ 6%320. 100: 18400
RY2:¥2=21/22%100 load record [Z1, OBJ, DS, 2010]: 368

direct value: 2.0

load record [Z2, OBIJ, DS, 2010]: 2.0

- dircct valuc: 1600.0

load record [Y3, OBJ, DS, 2010]: 1600.0

Figure 3: Quantity value computation according to computational rule.

Leave aside that there are some conditions of @dn and priorities and assume that the
rule RX has been applied during value determinatiRight side in Figure 3 shows what it
means to apply rule RX:

1. RX is defined as summation of three other quastitiene first one is Y1, so its value

must be computed first.

2. For Y1 there is a rule RY1 which states that Y 1fémility can be computed as sum of
Y1 for individual facility units.
Y1 for units B1 and B2 can be loaded from storagealise there is no applicable rule.
Next is Y2 which can be computed using rule RY?2.
Quantities Z1 and Z2 can be again loaded from géora
Finally, value of Y3 can be also loaded as thermisule.

o gk w

DISCUSSION

If there is such system of metadata as describedealbnd appropriate tool for editing,

preferably integrated into the enterprise systesalfit programmer or system administrator
can easily add new business functions into systeedib existing without knowledge of the

system internals and moreover, with minimal knowkedf programming. Proposed approach
also minimize error rate, because new logic to iappbn is added through predefined
wizards.

Groovy as expression language
Some element properties are stated to be expresssonthere must be some expression
language employed. Requirements for the language ar

e good integration into Java project [5],

e dynamic language,

57

» support for lambda expressions.
Groovy meets all the requirements imposed and \wad as expression language [3]. Despite
the fact, that the main structure can be constdudgte built-in editor with proposed
hierarchical metadata without any programming, e&st minimal programming skill is
required to describe constraints and computatianes logic.

Great help are lambda expressions mainly in comoregtith collection methodéndAll and
collect [4]. For example when we want to get all used camities from respective
generation units to repeat some sub tree for thentan write:

obj ect . devi ces. findAl | {dev -> dev.isType(20)}.collect{dev ->
dev. commodi t yUsages. col | ect{usg -> usg.commodi ty}}.flatten(). unique()

At first glance it may seem difficult to understatius expression, but it is quite easy for
person with at least minimal programming background

Deploying metadata

Another advantage of the overall approach is ay daployment of the business logic. All
metadata can be exported to a XML file (naturaliahavith regard to hierarchical nature of
data) and imported back to system with similar naacm.

CONCLUSION

We introduced a way how we had utilized the detlagaparadigm in development of
enterprise information system for an electricityngany and stated advantages of this
approach: agile and rapid development, smaller eate and easier deployment.

ACKNOWLEDGEMENT
Creation of this paper was patrtially supported lgyamnt SGS 11/167.

LITERATURE

[1] Jayaratchagan, N. Declarative Programming waJgit. 2011-04-06]. Available from
WWW: < http://oatv.com/pub/a/onjava/2004/04/21/deative.html >.

[2] Lloyd, J. W.Practical Advantages of Declarative Programmifgjt. 2011-04-06].
Available from WWW:
<ftp://clip.dia.fi.upm.es/pub/papers/PARFORCE/setaeview/D.WP3.1.M2.3.ps.Z>.
[3] Groovy — An agile dynamic language for the JavafBtan. Available from WWW:
<http://groovy.codehaus.org/>

[4] Groovy — ClosuresAvailable from WWW: <http://groovy.codehaus.org8ures>.

[5] Scripting for the Java PlatfornAvailable from WWW: < http://download.oracle.com
/javase/6/docs/technotes/guides/scripting/indeXhtm

58

