
97

INTRODUCTION TO COMPOSITE-ORIENTED
SOFTWARE DESIGN

Zbyněk Šlajchrt
ICZ a. s., Na Hřebenech II 1718/10, 140 00 Praha 4,
University of Economics, Prague, Faculty of Informatics and Statistics, Department of
Information Technologies
zslajchrt@gmail.com

ABSTRACT

This article briefly introduces an emerging architectonical style – composite-oriented
design. To demonstrate its potential two other wide-spread architectonical styles (service-
oriented and object oriented styles) are shortly presented with focus on their weaknesses. The
article claims that these weaknesses are inherent and relate to dividing applications into tiers
and layers. Composite-oriented design abandons the concept of tiers and offers a solution
based on the concept of fragments that are local analogs to the global tiers. These fragments
are reusable building blocks that are put together to form bigger autonomous units called
composites. The fragments collaborate within the composite to implement the requested
functionality. A part of the author's thesis is development of a Java language extension called
Chaplin ACT, whose purpose is to introduce dynamic composition of objects by means of the
tools and concepts of the Java language.

KEYWORDS:

Software architecture, object-oriented programming, SOA, multi-tier architecture

1. INTRODUCTION

There are two principal and de facto orthogonal architectonical styles that dominate in the
domain of designing enterprise applications – the multi-tier (aka service-oriented) and the
object-oriented styles. While the first considers a service as the key concept and promotes
dividing the system into physically separable tiers and separation of data from the business
logic, the latter favors keeping both the data and logic in a compact unit called object. For
either style there are boundaries within which the one style thrives better than the other.
However, there exists a certain domain of applications in which these styles suffer from some
inherent drawbacks that cannot be solved easily with the framework given by either paradigm.
This article briefly acquaints the reader with these issues and proposes a solution, which stems
from an emerging architectonical style called composite-oriented design [1].

The main objective of this article is to explain the basic principles of the composite
oriented architecture of software applications along with the motivations for it. Before delving
into the ideas of the composite design the two above-mentioned and more or less antagonistic
architectonical styles are briefly explained stressing theirs pros and cons. All design
approaches are presented within the context of a simple web application for managing photos
that is helping to illustrate the key traits of the approaches, such as extensibility and
reusability. The author has intentionally chosen this application as a representative of the
application domain, in which using the composite design can be the better choice comparing
to the other presented approaches. This domain gathers the applications, where a smooth
interaction with the user is the priority, in contrast to the applications, where the user’s
presence is secondary. The key factor for these user-centric applications is that their behavior
and responses accommodate to the user’s profile and needs. The user is not only an isolated
consumer of services; however, he or she enters actively into the interactions with the

98

application and is becoming an active element of the system.

2. MULTI-TIER ARCHITECTURE STYLE

The name of this architectonical style prompts that the key characteristics of this
architectonical style are tiers. Each tier provides a set of services that are utilized by the upper
neighbor tier. A tier represents a certain domain in which a particular type of tasks can be
solved. At the same time, this domain determines a specific vocabulary used for formulating
problems and goals. Therefore, the communication between the tiers can be seen as a
translation between two languages. Figure 1depicts the tiers, which an application can be
composed of along with typical vocabularies used within them.

Figure 1: Multi-tier design

Let's remind the key virtues that are often associated with the multi-tier architecture:
� scalabity
� reliability
� availabilty
� maintainability
� security.

Of course, there are some limitations, among who’s there belong to for example:
� demanding administration.
� increasing chance of a failure of a node as the number of nodes increases
� worse response
� costs

Let's return to the motivation application mentioned in the introduction. Let's inspect how we
could design its architecture within the multi-tier paradigm. The following picture 2 shows the
communication between the client and the application.

Figure 2: Three-tier design of the application

The scenario, in which the client sends a request for showing the page with a selected
photography, proceeds as follows: the request is captured by component

99

PhotoUIController, which is looking for the photography in the database by means of
method find of service PhotoService. If the photography is found the
PhotoUIController constructs an HTML representation of the photo and returns it to the
client in the form of HTTP response.

Though, this approach manifests some weaknesses. The first one relates to
polymorphism. As long as the application is to support multiple types of photography, while
there are some methods that behave differently with respect to the distinct photography types,
the application tier must be aware of this difference in the implementation of each service that
is affected by the difference, in contrast to the object-oriented approach, which allows hiding
this difference through its natural support of polymorphism.

Let’s look now at another scenario, in which we are trying to integrate the application
with another one. Let’s imagine it is necessary to integrate the functionality of our photo
album with a student information system. It should be possible to open a student’s
photography from the student’s page in the information system. The page with the
photography should contain also the basic information about the student. Furthermore, the
page contains a button for changing the format of the photography. It is natural to require that
the integrator reuse the functionality of the photo album at the most. Figure 3 illustrates a
possible schema of the integration.

Figure 3: The design of the integration scenario in the three-tier design

The main weakness of this approach is a low reuse of the photo album’s data domain.
If the data of the student information system and the photo album is stored in the same

database, it would be efficient to fetch both student and photography related data by one
database query. Furthermore, this single query would return only the data required for the
pending operation. It is being shown that because of the strict separation of the two systems it
is not possible at the same time to reuse the functionality of component
PhotoUIController and to query for the necessary data by a single query. This is a
general trait of strictly separated applications that communicate by means of services, which
may cause some limitations in case of a need to share and reuse the data model.

3. OBJECT-ORIENTED ARCHITECTURE STYLE

It is interesting that the best practices and patterns used during developing applications
within the framework of the multi-tier paradigm often contradict the best practices applied in
the object-oriented design. Another interesting aspect is that the service oriented applications
(i.e. layered applications) are being developed in object-oriented languages like Java or C #.
The object orientation of these languages, i.e. their most important feature, is often used only
marginally. In the service-oriented applications the key element is a service, i.e. a procedural
element that processes and/or provides data. The data and the business logic are separated. On
the other hand, the object oriented approach is exactly the opposite. The key element is an
object that encapsulates both the data and the logic.

100

Let’s go back to the photo album application. The following figure 4 shows the schema of
an object-oriented design for the application.

Figure 4: The object oriented design of the application

At first look, the schema is very similar to that of the multi-tier approach. The first significant
difference is moving the business logic to the Photo entity. The second important difference is
that the application keeps the state on the server in contrast to the multi-tier approach. While
in the case of the multi-tier architecture it is not necessary to keep the state of conversation
between the application and the client, this design stores the photo in the session on the server
and every operation that the client invokes is performed on it. The state of this entity, i.e. the
effect of the client’s operations, is kept in the memory until the client decides to store it back
to the database.

In contrast to the multi-tier design, this approach does support polymorphism. Anytime it
happens that a new kind of photography should be incorporated to the application, a new class
is created and derived from the base class representing a general photography.

Let’s look now, how the object-oriented approach makes out the problem of integrating
applications. (Figure 5)

Figure 5: The object oriented design of the integration

The schema is very similar to the one shown in the case of the multi-tier approach. The key
difference is that it contains stateful components and that the communication between the
applications is carried out at all three tiers and not only at the topmost one. Unfortunately, it
turns out that the object-oriented approach does not help either to resolve the problem of the
simultaneous reuse of PhotoUIController component and the database model. The
following chapter deals with an alternative approach called the composite design and that is
able to resolve all the above-mentioned problems.

101

4. COMPOSITE DESIGN1

The composite design stems from the idea of special building blocks called fragments. A
fragment can posses the typical object properties like identity, encapsulation, inheritance and
polymorphism, however, it is not always necessary. A fragment does not have to be utilizable
until it becomes a part of some other composite entity. It usually represents a certain narrowly
defined aspect of composite’s existence, for example a piece of data, a set of coherent
operations, crosscutting concerns like logging, security, various constraints and so on. A
fragment may also require a presence of another fragment in the composite for its correct
functionality. A simple illustrative example of the composite design is here [5]. Some of these
ideas can be implemented in dynamic languages like Python or Ruby [6], and also the Scala
language provides a very useful concept of traits that is very close to the concept of fragments
[3]. The Qi4J framework is attempting to provide a platform for designing statically
composed applications in Java [4]. As a part of his thesis the author develops a Java language
extension called Chaplin ACT, which is aimed at introducing dynamic composition of objects
by means of the tools and concepts of the Java language [2].

In the case of the photo album we can identify two data fragments. The first represents
the picture data itself while the other represents the metadata, like height, width, format etc.
Furthermore we can identify two behavioral fragments. The first is for the operations on the
photography and the other for creating the HTML presentation of the photography.

The next important concepts are that of assembler and formula. The assembler is a
constructor of composites which builds them according to a given formula. The formula
contains guidelines written in a special language for assembling a composite. (In some sense,
the formula replaces the concept of class as it is used in Java, for instance).

The following picture depicts the schema of a composite design of the photo album
(Figure 6).

Figure 6: The schema of the composite oriented design of the application

The most distinctive trait of this design embodies in the absence of tiers. They are replaced by
fragments. The scenario for beginning to work with the application performs as follows: the
client sends a request containing the identifier of the photography. The assembler captures the
request, which assembles a new composite according to the given formula. For the sake of
simplicity, let’s consider only three fragments: one data fragment PhotoData, one
behavioral fragment PhotoLogic and one presentational fragment PhotoUILogic. The
formula may look as follows:

1 I intentionally use term composite design instead of the similar term component design to emphasise the fact

that the composite is of primary concern in this approach. The traditional concept of component defines a
component as an autonomous, independent and reusable unit providing a defined functionality and depending
on other components through interfaces. The building blocks of composites in my approach – fragments –
have a similar purpose, however, in contrast to the components, they are often not capable of an independent
existence and they must be integrated to a higher unit, i.e. the composite, to provide their functionality.

102

1. Formula parameter: photography identifier
2. Create a fragment PhotoData and initialize it from the database by means of the

following query: „SELECT id, name, creator, date FROM photo
WHERE id = %1“, where the unique parameter is the photography identifier.

3. Create instances of fragments PhotoLogic and PhotoUILogic
4. Compose all three fragment instances into one composite object.
The fragment composition illustrates the following figure 7.

Figure 7: Composing the fragments

The composite is then stored into the session similarly as in the case of the object-oriented
approach. Simultaneously, the assembler calls a predefined method for creating the default
HTML presentation that returned to the client. The subsequent request will be routed directly
to the composite as the assembler's responsibility is to manage the life-cycle of objects.

Let's try to find out, how to integrate the photo album with the student information
system. It is the task which neither the multi-tier nor the object-oriented approach does
gracefully because of impossibility to share the object model.

The schema of the integration is shown on the following figure 8.

Figure 8: Integrating the applications by means of changing the composite's formula

It is clear, that this schema is practically identical with the previous one, but another formula
and extended fragments. The extended fragments are depicted on the following figure 9.

103

Figure 9: Extending the fragments

All three fragments for this integration scenario are derived from the original fragments by
means of inheritance. The StudentPhotoData data fragment contains the student’s
personal data in addition. The StudentPhotoLogic behavioral fragment posses in
addition the logic for modifying the size of the photography, while the
StudentPhotoUILogic presentation fragment overrides the original method for
generating the HTML representation of the photography and adds additional HTML elements.

The formula for the assembler can look as follows:
1. Formula parameter: the photography identifier
2. Create an instance of fragment PhotoData and initialize it from the database by

means of this query: „SELECT * FROM photo INNER JOIN student ON
student.photoID=photo.ID WHERE student.id = %1“, where the
unique parameter corresponds to the photography identifier.

3. Create instances of fragments StudentPhotoLogic a StudentPhotoUILogic
4. Compose all three instances into one composite object.
In the query we used the JOIN clause for joining the both models. We can conclude now,

that we have utilized at the most all contemporary components from the photo album
application by means of inheritance and simultaneously we have achieved optimal sharing
data models of both applications.

5. CONCLUSION

The main goal of this article was to explain the basic ideas of the composite design in
comparison with two other architectonical styles – SOA and OOA&D – and in the context of
a simple web application. In contrast to the two other approaches the composite oriented
design is being evolved and is not very established yet.

It has been shown that for a certain domain of applications using the composite paradigm
may be the better choice since the traditional approaches are not able to cope with the inherent
problems such as uneasy extending the application with other types that inherit from existing
entities (the multi-tier approach) and the problem with sharing data models between the
integrated applications (the object oriented design).

The composite oriented design, which can be considered a generalization of the object
oriented design, solves the illustrated problems and simultaneously offers an alternative view
at the modeled system, in which the global tiers are replaced with local fragments as the
building blocks for the composite structures in the application.

At present, the composite oriented approach can be applied with the help of the dynamic
programming languages. The downside of this way is the lack of the static type system. The
Qi4j framework allows the programmer to apply the static composition of fragments. As a

104

part of author's thesis is developing a Java language extension called Chaplin ACT, which is
aimed at introducing dynamic composition of objects by means of the tools and concepts of
the Java language.

REFERENCES

[1] Reenskaug, Trygve; Coplien, James O.: The DCI Architecture,
http://www.artima.com/articles/dci_vision.html

[2] Šlajchrt, Zbyněk: Chaplin ACT, http://www.iquality.org/chaplin
[3] Scala Language, http://www.scala-lang.org/
[4] Qi4j, http://www.qi4j.org/
[5] Composite Oriented Programming, http://iridescence.no/post/Composite-Oriented-

Programming.aspx
[6] Metaprogramming in Ruby and Python,

http://codeblog.dhananjaynene.com/2010/01/dynamically-adding-methods-with-
metaprogramming-ruby-and-python/

